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Abstract

Flach and Morin constructed in [9] Weil-étale cohomology H i
W,c(X,Z(n)) for a

proper, regular arithmetic scheme X (i.e. separated and of finite type over SpecZ)

and n ∈ Z. In the case when n < 0, we generalize their construction to an arbi-

trary arithmetic scheme X, thus removing the proper and regular assumption. The

construction assumes finite generation of suitable étale motivic cohomology groups.

1 Introduction

Stephen Lichtenbaum, in a series of papers [26, 27, 28], has envisioned a new cohomology

theory for schemes, known as Weil-étale cohomology. The case of varieties over finite

fields X/Fq was further studied by Geisser [11, 13, 14]. Morin defined in [34] Weil-étale

cohomology with compact support H i
W,c(X,Z) for X → SpecZ separated, of finite type,

proper, and regular. This construction was further generalized by Flach and Morin in [9]

to the groups H i
W,c(X,Z(n)) with arbitrary weights n ∈ Z, under the same assumptions

on X.

The aim of this paper is to remove the assumption that X is proper and regular and,

following the ideas of [9], to construct the groups H i
W,c(X,Z(n)) for any X separated and

of finite type over SpecZ for the case of strictly negative weights n < 0.

As Flach and Morin already suggest in [9, Remark 3.11], we rework all their construc-

tions in terms of cycle complexes Zc(n), which were considered by Geisser in [15] in the

context of arithmetic duality theorems.
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In a forthcoming paper we apply the results of this text to relate the cohomology

groups H i
W,c(X,Z(n)) to the special value of the zeta function ζ(X, s) at s = n < 0.

Notation and conventions

Arithmetic schemes. In this work, an arithmetic scheme is a scheme X that is

separated and of finite type over SpecZ.

Abelian groups. Let A be an abelian group. For m ≥ 1 we denote by mA its m-torsion

subgroup, and by Am the quotient A/mA:

0→ mA→ A
×m−−→ A→ Am → 0

We denote by Adiv (resp. Ator) the maximal divisible subgroup (resp. maximal torsion

subgroup), and by Acotor the quotient A/Ator.

We say that A is of cofinite type if it is Q/Z-dual to a finitely generated abelian

group: A = Hom(B,Q/Z) for a finitely generated B.

Complexes. All our constructions take place in the derived category of abelian groups

D(Z). For our purposes, we introduce the following terminology. Recall first that a

complex of abelian groups A• is perfect if it is bounded (i.e. H i(A•) = 0 for |i| � 0),

and H i(A•) are finitely generated abelian groups.

Definition 1.1. A complex of abelian groups A• is almost perfect if the cohomology

groups H i(A•) are finitely generated, and bounded, except for possible finite 2-torsion in

arbitrarily high degree. That is, H i(A•) = 0 for i � 0 and H i(A•) is finite 2-torsion for

i� 0.

A complex of abelian groups A• is of cofinite type if the cohomology groups H i(A•)

are of cofinite type and bounded.

A complex of abelian groups A• is almost of cofinite type if the cohomology groups

H i(A•) are of cofinite type and bounded, except for possible finite 2-torsion in arbitrarily

high degree.

This terminology is ad hoc and was invented for this text, since such complexes will

appear frequently. Some basic observations about almost perfect and almost cofinite type

complexes are collected in Appendix A. We note that this finite 2-torsion in arbitrarily

high degrees could be removed by working with the Artin–Verdier topology X ét instead

of the usual étale topology Xét. The general construction and basic properties of X ét are

treated in [9, Appendix A], but only for a proper and regular arithmetic scheme X. Our

methods circumvent this restriction at the cost of some technical hurdles with 2-torsion.
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Étale cohomology. For an arithmetic scheme X and a complex of étale sheaves F•,
we denote by

RΓ(Xét,F•) (resp. RΓc(Xét,F•), RΓ̂c(Xét,F•))

the complex that computes the corresponding cohomology, resp. cohomology with com-

pact support, and modified cohomology with compact support. For the convenience of

the reader, we review the definitions in Appendix B. The purpose of RΓ̂c(Xét,F•) is

to take care of real places X(R). There exists a canonical projection RΓ̂c(Xét,F•) →
RΓc(Xét,F•), which is an isomorphism if X(R) = ∅.

G-equivariant sheaves and their cohomology. Let X be a topological space with

an action of a discrete group G. A G-equivariant sheaf F on X can be defined as an

espace étalé π : E → X with a G-action on E such that the projection π is G-equivariant

(see e.g. [30, §II.6 + pp. 594]). We denote by Sh(G,X ) the corresponding category.

The equivariant global sections are defined by

Γ(G,X ,F) = F(X )G,

with G acting on F(X ) = {s : X → E | π ◦ s = idX} via (g · s)(x) = g · s(g−1 · x).

The corresponding G-equivariant cohomology is given by the right derived functors of

Γ(G,X ,−).

More details on G-equivariant sheaves can be found in [33, Chapitre 2]. For our modest

purposes, it suffices to know that any G-module A gives rise to the corresponding abelian

G-equivariant constant sheaf. The latter corresponds to the espace étalé X × A → X ,

where A is endowed with the discrete topology.

GR-equivariant cohomology of X(C). Given an arithmetic scheme X, we denote by

X(C) the set of complex points of X endowed with the analytic topology. It carries the

natural action of the Galois group GR := Gal(C/R).

We consider the GR-modules

Z(n) := (2πi)n Z, Q(n) := (2πi)nQ, Q/Z(n) := Q(n)/Z(n)

as constant GR-equivariant sheaves on X(C).

Then RΓc(X(C), A(n)) for A = Z,Q,Q/Z (the complex that computes singular co-

homology with compact support of X(C) with coefficients in A(n)) is a complex of GR-

modules, and we can further take the group cohomology (resp. Tate cohomology):

RΓc(GR, X(C), A(n)) := RΓ(GR, RΓc(X(C), A(n))),

RΓ̂c(GR, X(C), A(n)) := RΓ̂(GR, RΓc(X(C), A(n))).

By definition, this is the GR-equivariant cohomology (resp. GR-equivariant Tate

cohomology) with compact support of X(C) with coefficients in A(n).
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Motivic cohomology H i(Xét,Zc(n)). Our construction is based on motivic cohomol-

ogy defined in terms of complexes of sheaves Zc(n) on Xét. We follow the notation of

[15].

Briefly, for i ≥ 0 we consider the algebraic simplex

∆i = SpecZ[t0, . . . , ti]/(
∑
i

ti − 1).

We fix a negative weight n ≤ 0. Let zn(X, i) be the free abelian group generated by the

closed integral subschemes Z ⊂ X×∆i of dimension n+i that intersect the faces properly.

Then zn(X, •) is a (homological) complex of abelian groups whose differentials are given

by the alternating sum of intersections with the faces. We consider the (cohomological)

complex of étale sheaves

Zc(n) := zn( ,−•)[2n].

The boundedness from below of Zc(n) is not known in general; it is a variant of the

Beilinson–Soulé vanishing conjecture. To work unconditionally with the derived functors,

we use K-injective resolutions [38, 36] (resp. K-flat resolutions for the derived tensor

products).

To avoid any confusion, we use cohomological numbering for all complexes in this

paper, so we set

H i(Xét,Zc(n)) := H i(RΓ(Xét,Zc(n))).

([15] uses homological numbering.)

If X is proper, regular and of pure dimension d, then for n ≤ 0 there exists an

isomorphism

(1) H i(Xét,Zc(n)) ∼= H2d+i(Xét,Z(d− n)),

where the right-hand side is the “usual” motivic cohomology defined for positive weights;

see the original Bloch’s paper [4] for the case of varieties, and also [10, 12] for the definitions

and properties over SpecZ.

Assumptions

Weights. In this paper, n < 0 always denotes a strictly negative integer, which will be

the weight in the cohomology groups H i
W,c(X,Z(n)).

Finite generation conjecture. Our construction of the Weil-étale cohomology groups

H i
W,c(X,Z(n)) uses the following assumption.

Conjecture 1.2. Lc(Xét, n): for an arithmetic scheme X and n < 0, the cohomology

groups H i(Xét,Zc(n)) are finitely generated for all i ∈ Z.
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See Proposition 8.3 for the precise relation of Lc(Xét, n) to other conjectures that

appear in the literature. We refer to §8 for the cases where the conjecture is known.

Main results

Before outlining the construction of Weil-étale cohomology, we state the main results of

this paper that make it possible. One of our main objects is the following complex of

abelian sheaves Z(n) on Xét.

Definition 1.3 ([9, §3.1], [11, §7]). Let X be an arithmetic scheme and n < 0. For a

prime p, consider the localization X[1/p], and let µpr be the sheaf of pr-th roots of unity

on X[1/p]. We define the twist of µpr by n as

µ⊗npr = HomX[1/p](µ
⊗(−n)
pr ,Z/prZ).

Now Z(n) is the complex of sheaves on Xét given by

Z(n) = Q/Z(n)[−1], where Q/Z(n) =
⊕
p

lim−→
r

jp!µ
⊗n
pr ,

and jp is the canonical open immersion X[1/p]→ X.

The above sheaves Z(n) should not be confused with cycle complexes; the latter are

Zc(n) in the context of this paper. In §2 we prove the following arithmetic duality theorem

relating the two.

Theorem I. Assuming Conjecture Lc(Xét, n), there is a quasi-isomorphism

RΓ̂c(Xét,Z(n))
∼=−→ RHom(RΓ(Xét,Zc(n)),Q/Z[−2]).

The second result we need is related to the following morphism of complexes.

Definition 1.4. We define v∗∞ : RΓc(Xét,Q/Z(n))→ RΓc(GR, X(C),Q/Z(n)) as the

morphism in the derived category D(Z) induced by the comparison of étale and analytic

topology

Γc(Xét,Q/Z(n))→ Γc(GR, X(C), α∗Q/Z(n)) ∼= Γc(GR, X(C),Q/Z(n))

(see Proposition B.5 and 6.1). Then we let u∗∞ : RΓc(Xét,Z(n)) → RΓc(GR, X(C),Z(n))

be the composition

RΓc(Xét,Z(n)) := RΓc(Xét,Q/Z(n))[−1]
v∗∞[−1]−−−−→ RΓc(GR, X(C),Q/Z(n))[−1]

→ RΓc(GR, X(C),Z(n))

where the last arrow is induced by Q/Z(n)[−1] → Z(n), which comes from the distin-

guished triangle of constant GR-equivariant sheaves Z(n)→ Q(n)→ Q/Z(n)→ Z(n)[1].
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Then §6 is devoted to the following result.

Theorem II. The morphism u∗∞ is torsion, i.e. there exists a nonzero integer m such

that mu∗∞ = 0

Sketch of the construction of Weil-étale cohomology

Here we describe the structure of this paper, as well as our construction of the Weil-étale

complexes RΓW,c(X,Z(n)).

First, §2 is devoted to the proof of Theorem I. Some of its consequences are deduced in

§4. Namely, if we assume Conjecture Lc(Xét, n), then RΓ(Xét,Zc(n)) is an almost perfect

complex, while RΓc(Xét,Z(n)) is almost of cofinite type in the sense of Definition 1.1. For

this, we first make a small digression in §3 to analyze what kind of complexes we obtain

for the GR-equivariant cohomology of X(C).

Theorem I is used in §5 to define a morphism αX,n in the derived category (see Defi-

nition 5.1), and declare RΓfg(X,Z(n)) to be its cone:

RHom(RΓ(Xét,Zc(n)),Q[−2])
αX,n−−−→ RΓc(Xét,Z(n))→ RΓfg(X,Z(n))

→ RHom(RΓ(Xét,Zc(n)),Q[−1])

The notation “fg” comes from the fact that RΓfg(X,Z(n)) is an almost perfect complex

in the sense of Definition 1.1. Thanks to specific properties of the complexes involved,

it turns out that RΓfg(X,Z(n)) is defined up to a unique isomorphism in the derived

category (which is not normally expected from a cone).

Then in §6 we establish Theorem II, and it is used in §7 to define Weil-étale complexes

RΓW,c(X,Z(n)). To do this, we deduce from Theorem II that u∗∞◦αX,n = 0, which implies

that there exists a morphism in the derived category

i∗∞ : RΓfg(X,Z(n))→ RΓc(GR, X(C),Z(n))

—see (2) below. We choose a mapping fiber of i∗∞ and call it RΓW,c(X,Z(n)), which

turns out to be a perfect complex. Finally, in §8 we consider the cases of X for which

Conjecture Lc(Xét, n) is known, and hence our results hold unconditionally, and in §9 we

verify that if X is proper and regular, our complex RΓW,c(X,Z(n)) is isomorphic to that

constructed in [9] by Flach and Morin.

There are two appendices to this paper: Appendix A collects some lemmas from homo-

logical algebra, and Appendix B gives an overview of the definitions of étale cohomology

with compact support RΓc(Xét,−) and its modified version RΓ̂c(Xét,−).
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The definition of RΓW,c(X,Z(n)) fits in the following commutative diagram with dis-

tinguished triangles in the derived category D(Z):

(2)

RHom(RΓ(Xét,Zc(n)),Q[−2]) 0

RΓc(Xét,Z(n)) RΓc(GR, X(C),Z(n))

RΓW,c(X,Z(n)) RΓfg(X,Z(n)) RΓc(GR, X(C),Z(n)) RΓW,c(X,Z(n))[1]

RHom(RΓ(Xét,Zc(n)),Q[−1]) 0

αX,nDfn. 5.1

u∗∞

Dfn. 1.4

id

i∗∞

Our construction follows [9], and the resulting complex is the same if X is proper

and regular, which is the assumption considered by Flach and Morin. Here is a brief

comparison between the notations.

this paper Flach–Morin

X → SpecZ
separated, of finite type

X → SpecZ
separated, of finite type

proper, regular, equidimensional

n < 0 n ∈ Z

cycle complexes

Zc(n)

cycle complexes

Z(d− n)[2d], d = dimX

RΓfg(X,Z(n))
RΓW (X,Z(n)),

up to finite 2-torsion

RΓW,c(X,Z(n)) RΓW,c(X,Z(n))
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2 Proof of Theorem I

At the heart of our constructions is an arithmetic duality theorem for cycle complexes

established by Thomas Geisser in [15]. The purpose of this section is to deduce Theorem I

from Geisser’s duality. We would like to obtain a quasi-isomorphism of complexes

RΓ̂c(Xét,Z(n))
∼=−→ RHom(RΓ(Xét,Zc(n)),Q/Z[−2]).

Here RΓ̂c(Xét,Z(n)) denotes the modified étale cohomology with compact support,

described in Appendix B. We note that [15] uses the notation “RΓc” for our “RΓ̂c”,

but we take special care to distinguish the two things, since we also need the usual étale

cohomology with compact support RΓc(Xét,Z(n)).

We split our proof of Theorem I into two propositions.

Proposition 2.1. For any n < 0 we have a quasi-isomorphism of complexes

(3) RΓ̂c(Xét,Z(n)) ∼= lim−→
m

RHom(RΓ(Xét,Z/mZc(n)),Q/Z[−2]).

Proof. We unwind our definition of Z(n) for n < 0 and reduce everything to the

results from [15]. Since Z(n) :=
⊕

p lim−→r
jp!µ

⊗n
pr [−1], it suffices to show that for every

prime p and r ≥ 1 there is a quasi-isomorphism of complexes

(4) RΓ̂c(Xét, jp!µ
⊗n
pr [−1]) ∼= RHom(RΓ(Xét,Zc/pr(n)),Q/Z[−2]),

and then pass to the corresponding filtered colimits.

As in Definition 1.3, here jp denotes the canonical open immersion jp : X[1/p] ↪→ X.

We further denote by f the structure morphism X → SpecZ and by fp the structure

morphism X[1/p]→ SpecZ[1/p]:

X[1/p] X

SpecZ[1/p] SpecZ

jp

fp f

As we are going to change the base scheme, let us write HomX(−,−) for the Hom

between sheaves on Xét and HomX(−,−) for the internal Hom. Instead of HomSpecR, we

will simply write HomR.
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Applying various results from [11] and [15], we obtain a quasi-isomorphism of com-

plexes of sheaves

RHomX(jp!µ
⊗n
pr [−1],ZcX(0)) ∼=

∼= Rjp∗RHomX[1/p](µ
⊗n
pr [−1],ZcX[1/p](0)) by [15, Prop. 7.10 (c)]

∼= Rjp∗RHomX[1/p](f
∗
pµ
⊗n
pr [−1],ZcX[1/p](0))

∼= Rjp∗Rf
!
pRHomZ[1/p](µ

⊗n
pr [−1],ZcZ[1/p](0)) by [15, Prop. 7.10 (c)]

∼= Rjp∗Rf
!
pRHomZ[1/p](µ

⊗n
pr [−1],Gm[1]) by [15, Lemma 7.4]

∼= Rjp∗Rf
!
pRHomZ[1/p](µ

⊗n
pr ,Gm)[2]

∼= Rjp∗Rf
!
p µ
⊗(1−n)
pr [2]

∼= Rjp∗Rf
!
p

(
ZZ[1/p]/p

r(1− n)
)

[2] by [11, Thm. 1.2]

∼= Rjp∗Rf
!
p ZcZ[1/p]/pr(n) by (1)

∼= Rjp∗ZcX[1/p]/p
r(n) by [15, Prop. 7.10 (a)]

∼= Rjp∗j
∗
pZcX/pr(n) ∼= ZcX/pr(n) by [15, Thm. 7.2 (a), Prop. 2.3]

After applying RΓ(Xét,−), we get a quasi-isomorphism of complexes of abelian groups

RHom(jp!µ
⊗n
pr [−1],ZcX(0)) ∼= RΓ(Xét,ZcX/pr(n)).

Now according to the duality [15, Theorem 7.8],

RHom(jp!µ
⊗n
pr [−1],Zc(0)) ∼= RHom(RΓ̂c(Xét, jp!µ

⊗n
pr [−1]),Q/Z[−2]).

What we end up with is a quasi-isomorphism

RΓ(Xét,Zc/pr(n)) ∼= RHom(RΓ̂c(Xét, jp!µ
⊗n
pr [−1]),Q/Z[−2]).

The groups Ĥ i
c(Xét, jp!µ

⊗n
pr [−1]) are finite (the sheaves jp!µ

⊗n
pr are constructible), so apply-

ing RHom(−,Q/Z[−2]) yields (4).

To conclude the proof of Theorem I, we identify the complex on the right-hand side

of (3). For this, we need Conjecture Lc(Xét, n).

Proposition 2.2. Assuming Conjecture Lc(Xét, n), there is a quasi-isomorphism

lim−→
m

RHom(RΓ(Xét,Z/mZc(n)),Q/Z[−2]) ∼= RHom(RΓ(Xét,Zc(n)),Q/Z[−2]).
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Proof. Consider short exact sequences

0→ H i(Xét,Zc(n))m → H i(Xét,Z/mZc(n))→ mH
i+1(Xét,Zc(n))→ 0

If we now take Hom(−,Q/Z) and filtered colimits lim−→m
, we get

(5) 0→ lim−→
m

Hom(mH
i+1(Xét,Zc(n)),Q/Z)→

lim−→
m

Hom(H i(Xét,Z/mZc(n)),Q/Z)→

lim−→
m

Hom(H i(Xét,Zc(n))m,Q/Z)→ 0

By Conjecture Lc(Xét, n), the group H i+1(Xét,Zc(n)) is finitely generated, and hence

the first lim−→m
in the short exact sequence (5) vanishes, and we obtain isomorphisms

lim−→
m

Hom(H i(Xét,Zc(n))m,Q/Z)
∼=−→ lim−→

m

Hom(H i(Xét,Z/mZc(n)),Q/Z).

It remains to note that the left-hand side is canonically isomorphic to Hom(H i(Xét,Zc(n)),Q/Z),

again thanks to the finite generation of H i(Xét,Zc(n)), under Conjecture Lc(Xét, n).

To see this, observe that if A is a finitely generated abelian group, there is a canonical

isomorphism

lim−→
m

Hom(Am,Q/Z) ∼= Hom(A,Q/Z)

induced by A→ Am, and then applying the functor Hom(−,Q/Z) and lim−→m
. Since Q/Z

is a torsion group, any homomorphism A → Q/Z is killed by some m, hence factors

through Am.

3 GR-equivariant cohomology of X(C)

We begin with some elementary homological algebra.

Lemma 3.1. Let A• be a perfect complex of ZGR-modules.

1) The complex A• ⊗L Q/Z is of cofinite type.

2) RΓ(GR, A
• ⊗ Q) ∼= (A• ⊗ Q)GR is a perfect complex of Q-vector spaces, and the

complex RΓ̂(GR, A
• ⊗Q) is quasi-isomorphic to 0.

3) RΓ̂(GR, A
• ⊗L Q/Z) ∼= RΓ̂(GR, A

•[+1]), and these complexes have finite 2-torsion

cohomology.

4) RΓ(GR, A
•) is almost perfect, and RΓ(GR, A

• ⊗L Q/Z) is almost of cofinite type.
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Proof. The universal coefficient theorem gives us short exact sequences

0→ H i(A•)m → H i(A• ⊗L Z/mZ)→ mH
i+1(A•)→ 0

The colimit of these over m is

0→ H i(A•)⊗Q/Z→ H i(A• ⊗L Q/Z)→ H i+1(A•)tor → 0

Here H i(A•) ⊗ Q/Z is injective, hence the short exact sequence splits. We see that

H i(A• ⊗L Q/Z) is of cofinite type and vanishes for |i| � 0, i.e. that A• ⊗L Q/Z is of

cofinite type.

Let us now consider the spectral sequences

Epq
2 = Hp(GR, H

q(A• ⊗Q)) =⇒ Hp+q(GR, A
• ⊗Q),(6)

Epq
2 = Ĥp(GR, H

q(A• ⊗Q)) =⇒ Ĥp+q(GR, A
• ⊗Q).(7)

We recall that Hp(GR,−) are 2-torsion groups for p > 0. Since Hq(A• ⊗Q) are Q-vector

spaces, it follows that Epq
2 = 0 for p > 0 in (6), and the spectral sequence degenerates.

Similarly, the Tate cohomology groups Ĥp(GR, H
q(A• ⊗ Q)) are trivial for all p for the

same reasons, so that (7) is trivial. This proves part 2).

Part 3) now follows from the distinguished triangle

RΓ̂(GR, A
•)→ RΓ̂(GR, A

• ⊗Q)→ RΓ̂(GR, A
• ⊗L Q/Z)→ RΓ̂(GR, A

•)[1]

Next, examining the spectral sequence

Epq
2 = Hp(GR, H

q(A•)) =⇒ Hp+q(GR, A
•),

we see that the groups H i(GR, A
•) are finitely generated, zero for i � 0, and torsion for

i� 0. The latter is 2-torsion. To see that, let P• � Z be the bar-resolution of Z by free

ZGR-modules. Consider the morphism of complexes

· · · P3 P2 P1 P0 0

· · · P3 P2 P1 P0 0

2 2 2 2−N

where N denotes the norm map. The proof of [41, Theorem 6.5.8] shows that the above

morphism induces multiplication by 2 on H i(GR,−) for i > 0, and it is null-homotopic.

Since A• is bounded, we see that the above morphism induces multiplication by 2 on

H i(GR, A
•) for i� 0.

Similarly, analyzing

Epq
2 = Hp(GR, H

q(A• ⊗L Q/Z)) =⇒ Hp+q(GR, A
• ⊗L Q/Z).
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we see that H i(GR, A
• ⊗L Q/Z) are groups of cofinite type. To see that these are finite

2-torsion for i� 0, consider the triangle

RΓ(GR, A
•)→ RΓ(GR, A

• ⊗Q)→ RΓ(GR, A
• ⊗L Q/Z)→ RΓ(GR, A

•)[1]

Here RΓ(GR, A
• ⊗Q) is bounded, and therefore H i(GR, A

• ⊗L Q/Z) ∼= H i+1(GR, A
•) for

i� 0.

Proposition 3.2. Let X be an arithmetic scheme. Then X(C) has the following types

of complexes as its cohomology:

A = Z A = Q A = Q/Z

RΓc(X(C), A(n)) perfect/Z perfect/Q cofinite type

RΓc(GR, X(C), A(n))
almost
perfect

perfect/Q
almost

cofinite type

RΓ̂c(GR, X(C), A(n))
finite

2-torsion
∼= 0

finite
2-torsion

Moreover, there is an isomorphism

(8) Ĥ i
c(GR, X(C),Z(n)) ∼= H i

c(GR, X(C),Z(n)) for i ≥ 2 dimX − 1.

Proof. The perfectness of RΓc(X(C),Z(n)) follows from the fact that X(C) has the

homotopy type of a finite CW-complex. This result goes back to van der Waerden [40];

more recent expositions (of more general results) can be found e.g. in [29] and [22]. The

rest of the table is an application of the previous lemma to RΓc(X(C),Z(n)).

Finally, for (8), consider the spectral sequences

Êpq
2 = Ĥp(GR, H

q
c (X(C),Z(n))) =⇒ Ĥ i

c(GR, X(C),Z(n)),

Epq
2 = Hp(GR, H

q
c (X(C),Z(n))) =⇒ H i

c(GR, X(C),Z(n)).

Here Ĥp(GR,−) ∼= Hp(GR,−) for p ≥ 1. Moreover, Hq
c (X(C),Z(n)) = 0 for q ≥

2 dimX − 1, for the reasons of topological dimension of X(C).

4 Some consequences of Theorem I

Now we deduce some consequences from the duality Theorem I.

Lemma 4.1. The canonical morphism φi : Ĥ i
c(Xét,Z(n)) → H i

c(Xét,Z(n)) sits in a

long exact sequence

· · · → Ĥ i−1
c (GR, X(C),Z(n))→ Ĥ i

c(Xét,Z(n))
φi−→ H i

c(Xét,Z(n))

→ Ĥ i
c(GR, X(C),Z(n))→ · · ·

where the groups Ĥ i
c(GR, X(C),Z(n)) are finite 2-torsion. In particular,
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1) the kernel and cokernel of φi are finite 2-torsion,

2) if X(R) = ∅, then RΓ̂c(GR, X(C),Z(n)) = 0 and Ĥ i
c(Xét,Z(n)) ∼= H i

c(Xét,Z(n)).

Proof. The exact sequence follows from the definition of modified étale cohomology

with compact support and Artin’s comparison theorem. This is proved in [9, Lemma 6.14].

In particular, the argument shows that RΓ̂c(GR, X(C),Z(n)) ∼= RΓ̂(GR, v
∗Rf∗Z(n)) where

v : SpecC→ SpecZ and f : X → SpecZ, and RΓ̂c(GR, X(C),Z(n)) = 0 if X(R) = ∅.
The fact that Ĥ i

c(GR, X(C),Z(n)) are finite 2-torsion is a part of Proposition 3.2.

Proposition 4.2. Let X be an arithmetic scheme of dimension d satisfying Conjec-

ture Lc(Xét, n) for n < 0.

1) If X(R) = ∅, then H i(Xét,Zc(n)) = 0 for i > 1 or i < −2d.

2) In general, H i(Xét,Zc(n)) = 0 for i < −2d, and H i(Xét,Zc(n)) is a finite 2-torsion

group for i > 1.

3) If X/Fq is a variety over a finite field, then the groups H i(Xét,Zc(n)) are finite for

all i ∈ Z.

In general, we have the following cohomology:

groups type i� 0 i� 0

H i(Xét,Zc(n))
finitely

generated
0 for i < −2d

finite
2-torsion

for i > 1

Ĥ i
c(Xét,Z(n)) cofinite

finite
2-torsion

for i < 1 0 for i > 2d+ 2

H i
c(Xét,Z(n)) cofinite 0 for i < 1

finite
2-torsion

for i > 2d+ 2

In particular, RΓ(Xét,Zc(n)) is an almost perfect complex, while RΓc(Xét,Z(n)) is almost

of cofinite type in the sense of Definition 1.1.

Proof. If X(R) = ∅, then our duality Theorem I gives

Hom(H2−i(Xét,Zc(n)),Q/Z) ∼= Ĥ i
c(Xét,Z(n))

X(R)=∅∼= H i
c(Xét,Z(n)).

We have H i
c(Xét,Z(n)) = 0 for i < 1 by the definition of Z(n), and H i

c(Xét,Z(n)) =

H i−1(Xét,Q/Z(n)) = 0 for i > 2d + 2 for the reasons of `-adic cohomological dimension

[1, Exposé X, Théorème 6.2]. This proves part 1) of the proposition.

In part 2), the group H i(Xét,Zc(n)) is finite 2-torsion for i > 1, thanks to part 1) and

Lemma 4.1. Moreover, we have H i(Xét,Zc(n)) ∼= H i(Xét,Qc(n)) for i < −2d according
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to [34, Lemma 5.12]. Conjecture Lc(Xét, n) implies that these groups are Q-vector spaces

finitely generated over Z, hence trivial.

In part 3), the cohomology groups H i(Xét,Z(n)) = H i−1(Xét,Q/Z(n)) are finite for

n < 0 by [23, Theorem 3].

Remark 4.3. If X is proper and regular of dimension d, then using (1), we note

that the Beilinson–Soulé vanishing conjecture (see, for example, [24, §4.3.4]) predicts that

H i(Xét,Zc(n)) = 0 for i < −2d. Therefore, we proved this under Conjecture Lc(Xét, n).

5 Complex RΓfg(X,Z(n))

The purpose of this section is to define auxiliary complexes RΓfg(X,Z(n)), which are used

below in the construction of Weil-étale cohomology.

Definition 5.1. Assuming Conjecture Lc(Xét, n), consider a morphism αX,n in the

derived category D(Z) given by the composition

RHom(RΓ(Xét,Zc(n)),Q[−2]) RHom(RΓ(Xét,Zc(n)),Q/Z[−2])

RΓ̂c(Xét,Z(n))

RΓc(Xét,Z(n))

Q�Q/Z

αX,n

Theorem I ∼=

proj.

Here the first arrow is induced by the canonical projection Q → Q/Z, and the last

arrow is the canonical projection from the modified cohomology with compact support to

the usual cohomology with compact support (see Appendix B).

We define the complex RΓfg(X,Z(n)) as a cone of αX,n:

RHom(RΓ(Xét,Zc(n)),Q[−2])
αX,n−−−→ RΓc(Xét,Z(n))→ RΓfg(X,Z(n))

→ RHom(RΓ(Xét,Zc(n)),Q[−1])

Further, we denote

H i
fg(X,Z(n)) := H i(RΓfg(X,Z(n))).

Remark 5.2. Under Conjecture Lc(Xét, n), the groups H i
c(Xét,Z(n)) are of cofinite

type by Theorem I, while RHom(RΓ(Xét,Zc(n)),Q[−2]) is a complex of Q-vector spaces.

Therefore, the morphism αX,n is completely determined by the maps between cohomology

groups

H i(αX,n) : Hom(H2−i(Xét,Zc(n)),Q)→ H i
c(Xét,Z(n))

—see Lemma A.5.
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Remark 5.3. We note that our RΓfg(X,Z(n)) plays the same role as RΓW (X ét,Z(n))

in [9, Definition 3.6]. We use a different notation since Flach and Morin work with the

Artin–Verdier topology and their complex RΓW (X ét,Z(n)) is perfect, while our complex

can have finite 2-torsion in arbitrarily high degree.

We first note that the definition simplifies when X has no real places.

Proposition 5.4. If X(R) = ∅, then

RΓfg(X,Z(n)) ∼= RHom(RΓ(Xét,Zc(n)),Z[−1]).

Proof. In this case RΓ̂c(Xét,Z(n))→ RΓc(Xét,Z(n)) is the identity morphism, and

therefore αX,n sits in the following commutative diagram with distinguished columns:

RHom(RΓ(Xét,Zc(n)),Q[−2]) RHom(RΓ(Xét,Zc(n)),Q[−2])

RΓc(Xét,Z(n)) RHom(RΓ(Xét,Zc(n)),Q/Z[−2])

RΓfg(X,Z(n)) RHom(RΓ(Xét,Zc(n)),Z[−1])

RHom(RΓ(Xét,Zc(n)),Q[−1]) RHom(RΓ(Xét,Zc(n)),Q[−1])

αX,n

id

∼=
Theorem I

∼=

id

Here the first column is our definition of RΓfg(X,Z(n)), and the second column is induced

by the distinguished triangle Z→ Q→ Q/Z→ Z[1].

Proposition 5.5. Assuming Conjecture Lc(Xét, n), the complex RΓfg(X,Z(n)) is al-

most perfect in the sense of Definition 1.1, i.e. its cohomology groups H i
fg(X,Z(n)) are

finitely generated, trivial for i� 0, and 2-torsion for i� 0.

Proof. By the definition of RΓfg(X,Z(n)), there are short exact sequences

0→ cokerH i(αX,n)→ H i
fg(X,Z(n))→ kerH i+1(αX,n)→ 0

The morphism αX,n is given at the level of cohomology by

(9) H i(αX,n) : Hom(H2−i(Xét,Zc(n)),Q)
ψi

−→ Hom(H2−i(Xét,Zc(n)),Q/Z)
∼=−→

Ĥ i
c(Xét,Z(n))

φi−→ H i
c(Xét,Z(n))

where H2−i(Xét,Zc(n)) is a finitely generated abelian group according to Lc(Xét, n).

Here φi has a finite 2-torsion kernel according to Lemma 4.1, and we observe that if

A is a finitely generated abelian group, then for a finite subgroup T ⊂ Hom(A,Q/Z) the
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preimage under Hom(A,Q)→ Hom(A,Q/Z) is finitely generated. This justifies the finite

generation of kerH i(αX,n) for all i ∈ Z.

For the morphism ψi we have

kerψi ∼= Hom(H2−i(Xét,Zc(n)),Z),

cokerψi ∼= Hom(H2−i(Xét,Zc(n))tor,Q/Z),

and these groups are finitely generated by Lc(Xét, n). The composition of morphisms (9)

gives an exact sequence (ignoring the isomorphism in the middle)

0→ kerψi → ker(φi ◦ ψi)→ kerψi → cokerψi → coker(φi ◦ ψi)→ cokerψi → 0

For i� 0 we have H i
c(Xét,Z(n)) = 0, and therefore

H i
fg(X,Z(n)) ∼= Hom(H1−i(Xét,Zc(n)),Q) = 0,

since the group H1−i(Xét,Zc(n)) is finite 2-torsion for i� 0 by Proposition 4.2.

For i� 0 we have Hom(H2−i(Xét,Zc(n)),Q) = 0, so thatH i
fg(X,Z(n)) ∼= H i

c(Xét,Z(n)),

which is finite 2-torsion by Proposition 4.2.

Proposition 5.6. The complex RΓfg(X,Z(n)) is defined up to a unique isomorphism

in the derived category D(Z).

Proof. The complex RHom(RΓ(Xét,Zc(n)),Q[−2]) consists of Q-vector spaces, and

RΓfg(X,Z(n)) is almost perfect, so we are in the situation of Corollary A.3.

Proposition 5.7. Suppose that Conjecture Lc(Xét, n) holds and consider the distin-

guished triangle defining RΓfg(X,Z(n)):

RHom(RΓ(Xét,Zc(n)),Q[−2])
αX,n−−−→ RΓc(Xét,Z(n))

f−→ RΓfg(X,Z(n))
g−→ RHom(RΓ(Xét,Zc(n)),Q[−1])

1) The morphism g induces an isomorphism

g ⊗Q : RΓfg(X,Z(n))⊗Q
∼=−→ RHom(RΓ(Xét,Zc(n)),Q[−1]).

2) For each m ≥ 1 the morphism f induces an isomorphism

f ⊗ Z/mZ : RΓc(Xét,Z(n))⊗L Z/mZ
∼=−→ RΓfg(X,Z(n))⊗L Z/mZ

3) For any prime ` the morphism f induces an isomorphism

lim←−
r

H i
c(Xét,Z/`r(n)) ∼= H i

fg(X,Z(n))⊗ Z`.
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Proof. The groups H i
c(Xét,Z(n)) are all torsion, and therefore RΓc(Xét,Z(n))⊗Q ∼=

0 in the derived category. Similarly, the complexes of Q-vector spacesRHom(RΓ(Xét,Zc(n)),Q[· · · ])
are killed by tensoring with Z/mZ. This proves 1) and 2).

Now 2) implies 3): by the finite generation of H i
fg(X,Z(n)), we have

lim←−
r

H i
c(Xét,Z/`r(n))

2)∼= lim←−
r

H i
fg(X,Z/`r(n)) ∼= lim←−

r

H i
fg(X,Z(n))/`r ∼= H i

fg(X,Z(n))⊗ Z`.

The groups H i
fg(X,Z(n)) provide an integral model for `-adic cohomology in the fol-

lowing sense (see also [11, §8]).

Corollary 5.8. Let X be an arithmetic scheme satisfying Conjecture Lc(Xét, n) for

n < 0. Then

H i
fg(X,Z(n))⊗ Z` ∼= H i

c(X[1/`]ét,Z`(n)),

where the right-hand side denotes `-adic cohomology with compact support.

Proof. We have Z(n)/`r ∼= j`!µ
⊗n
m . Now by part 3) of the previous proposition,

H i
fg(X,Z(n))⊗ Z` ∼= lim←−

r

H i
c(Xét, j`!µ

⊗n
`r ) ∼= lim←−

r

H i
c(X[1/`]ét, µ

⊗n
`r )

dfn
= H i

c(X[1/`]ét,Z`(n)).

6 Proof of Theorem II

The aim of this section is to prove Theorem II. We recall that it states that the morphism

of complexes u∗∞, defined as the composition

RΓc(Xét,Z(n)) RΓc(GR, X(C),Z(n))

RΓc(Xét,Q/Z(n))[−1] RΓc(GR, X(C),Q/Z(n))[−1]

u∗∞

v∗∞[−1]

is torsion. Here the morphism v∗∞ : RΓc(Xét,Q/Z(n)) → RΓc(GR, X(C),Q/Z(n)) is in-

duced by the comparison functor α∗ : Sh(Xét) → Sh(GR, X(C)), as explained in Propo-

sition B.5. We first ensure that α∗ identifies the sheaf Q/Z(n) on Xét from Definition 1.3

with the GR-equivariant sheaf Q/Z(n) := (2πi)n Q
(2πi)n Z on X(C).

Proposition 6.1. For the sheaf Q/Z(n) on Xét we have an isomorphism of GR-

equivariant constant sheaves on X(C)

α∗Q/Z(n) ∼= Q/Z(n).
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Proof. We first compute that the functor α∗ sends the sheaf µ⊗nm on Xét to the

constant GR-equivariant sheaf (2πi)n Z
m (2πi)n Z on X(C):

α∗µ⊗nm
∼= µm(C)⊗n := Hom(µm(C)⊗(−n),Z/mZ)

∼=
(2πi)n Z
m (2πi)n Z

—here the first isomorphism comes from the definition of α∗ given in Appendix B, and

the second isomorphism comes from the corresponding isomorphism of GR-modules.

Since α∗ preserves colimits (Lemma B.4), we have

α∗Q/Z(n) = α∗
(⊕

p

lim−→
r

jp!µ
⊗n
pr

)
∼= lim−→

m

α∗µ⊗nm
∼= lim−→

m

(2πi)n Z
m (2πi)n Z

∼=
(2πi)nQ
(2πi)n Z

.

We proceed with our proof of Theorem II. This seems nontrivial; our argument (moti-

vated by [9], where it is given for a proper and regular X) is based on the following result

about `-adic cohomology.

Proposition 6.2. Let X be an arithmetic scheme and n < 0. Then for any prime `

we have

(H i
c(XQ,ét,Q`/Z`(n))GQ)div = 0.

Proof. According to the basic results on `-adic cohomology [18, Exposé VI], there

exists a prime p 6= ` such that

(10) H i
c(XQ,ét,Z`(n)) ∼= H i

c(XFp,ét,Z`(n)).

We denote by Ip the inertia subgroup of the absolute Galois group GQp :

1→ Ip → GQp → GFp → 1

The isomorphism (10) is equivariant under the GQp-action on the left-hand side and

GFp-action on the right-hand side. We have

H i
c(XQ,ét,Q`/Z`(n))GQ � H i

c(XQ,ét,Q`/Z`(n))GQp/Ip ∼= H i
c(XFp,ét,Q`/Z`(n))GFp ,

so it suffices to show that

(H i
c(XFp,ét,Q`/Z`(n))GFp )div = 0.

The long exact sequence of GFp-modules

· · · → H i
c(XFp,ét,Z`(n))→ H i

c(XFp,ét,Q`(n))→ H i
c(XFp,ét,Q`/Z`(n))

→ H i+1
c (XFp,ét,Z`(n))→ · · ·
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induces short exact sequences

(11) 0→ H i
c(XFp,ét,Z`(n))cotor → H i

c(XFp,ét,Q`(n))→ H i
c(XFp,ét,Q`/Z`(n))div → 0

According to [19, Exposé XXI, 5.5.3], the eigenvalues of the geometric Frobenius acting

on H i
c(XFp,ét,Q`) are algebraic integers. After twisting Q` by n, the eigenvalues will lie

in p−n Z. Since n < 0 by our assumption, this implies that 1 does not appear as an

eigenvalue, and hence

H i
c(XFp,ét,Q`(n))GFp = 0.

Thus, after taking the GFp-invariants in (11), we obtain

0→ (H i
c(XFp,ét,Q`/Z`(n))div)

GFp → H1(GFp , H
i
c(XFp,ét,Z`(n))cotor)→ · · ·

This gives a monomorphism between the maximal divisible subgroups

((H i
c(XFp,ét,Q`/Z`(n))div)

GFp )div � H1(GFp , H
i
c(XFp,ét,Z`(n))cotor)div.

However, H1(GFp , H
i
c(XFp,ét,Z`(n))cotor) is a finitely generated Z`-module, and therefore

its maximal divisible subgroup is trivial. We conclude that

(H i
c(XFp,ét,Q`/Z`(n))GFp )div = ((H i

c(XFp,ét,Q`/Z`(n))div)
GFp )div = 0.

Proof of Theorem II. By Definition 1.4, this amounts to showing that the morphism

v∗∞ : RΓc(Xét,Q/Z(n))→ RΓc(GR, X(C),Q/Z(n))

is torsion. The complexes RΓc(Xét,Q/Z(n)) and RΓc(GR, X(C),Q/Z(n)) are almost of

cofinite type by Proposition 4.2 and Proposition 3.2 respectively. Therefore, according to

Lemma A.4, to show that v∗∞ : RΓc(Xét,Q/Z(n)) → RΓc(GR, X(C),Q/Z(n)) is torsion,

it suffices to show that the corresponding morphisms on the maximal divisible subgroups

H i
c(v
∗
∞)div : H i

c(Xét,Q/Z(n))div → H i
c(GR, X(C),Q/Z(n))div

are trivial. The morphism H i
c(v
∗
∞) factors through H i

c(XQ,ét, µ
⊗n)GQ , where µ⊗n is the

sheaf of all roots of unity on XQ,ét twisted by n. So we have

H i
c(Xét,Q/Z(n))div H i

c(GR, X(C),Q/Z(n))div

(
H i
c(XQ,ét, µ

⊗n)GQ
)

div

Hi
c(v
∗
∞)div

Now (
H i
c(XQ,ét, µ

⊗n)GQ
)

div
∼=

(⊕
`

H i
c(XQ,ét,Q`/Z`(n))GQ

)
div

∼=
⊕
`

(
H i
c(XQ,ét,Q`/Z`(n))GQ

)
div
,

where all the summands are trivial according by Proposition 6.2.
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7 Weil-étale complex RΓW,c(X,Z(n))

The aim of this section is to construct the Weil-étale cohomology complexesRΓW,c(X,Z(n)).

Lemma 7.1. Let X be an arithmetic scheme and n < 0. Assume Conjecture Lc(Xét, n),

so that the morphism αX,n exists. Then u∗∞ ◦ αX,n = 0.

RHom(RΓ(X,Zc(n)),Q[−2])

RΓc(Xét,Z(n)) RΓc(GR, X(C),Z(n))

αX,n
=0

u∗∞

Proof. The morphism αX,n is defined on a complex of Q-vector spaces, and u∗∞ is

torsion by Theorem II.

Definition 7.2. We let i∗∞ : RΓfg(X,Z(n)) → RΓc(GR, X(C),Z(n)) be a morphism

in D(Z) that gives a morphism of distinguished triangles

(12)

RHom(RΓ(X,Zc(n)),Q[−2]) 0

RΓc(Xét,Z(n)) RΓc(GR, X(C),Z(n))

RΓfg(X,Z(n)) RΓc(GR, X(C),Z(n))

RHom(RΓ(X,Zc(n)),Q[−1]) 0

αX,n

u∗∞

id

i∗∞

In fact, this makes i∗∞ independent of any choices.

Proposition 7.3. There is a unique morphism i∗∞ that fits in the diagram (12).

Proof. We can apply Corollary A.3, since RHom(RΓ(X,Zc(n)),Q[−2]) is a complex

of Q-vector spaces, and both RΓfg(X,Z(n)) and RΓc(GR, X(C),Z(n)) are almost perfect

by Proposition 5.5 and Proposition 3.2.

Proposition 7.4. The morphism i∗∞ is torsion.

Proof. Let us examine the morphism of distinguished triangles (12) that defines i∗∞;

in particular, the commutative diagram

RΓc(Xét,Z(n)) RΓfg(X,Z(n))

RΓc(GR, X(C),Z(n))

u∗∞
i∗∞
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According to Corollary A.3, the morphism

HomD(Z)(RΓfg(X,Z(n)), RΓc(GR, X(C),Z(n)))

→ HomD(Z)(RΓc(Xét,Z(n)), RΓc(GR, X(C),Z(n)))

induced by the composition with RΓc(Xét,Z(n))→ RΓfg(X,Z(n)), is mono, and therefore

HomD(Z)(RΓfg(X,Z(n)), RΓc(GR, X(C),Z(n)))⊗Q→
HomD(Z)(RΓc(Xét,Z(n)), RΓc(GR, X(C),Z(n)))⊗Q

is also mono. However, u∗∞⊗Q = 0 by Theorem II, and this implies that i∗∞⊗Q = 0.

We are now ready to define the Weil-étale complexes.

Definition 7.5. We let RΓW,c(X,Z(n)) be an object in the derived category D(Z)

which is a mapping fiber of i∗∞:

RΓW,c(X,Z(n))→ RΓfg(X,Z(n))
i∗∞−→ RΓc(GR, X(C),Z(n))→ RΓW,c(X,Z(n))[1]

The Weil-étale cohomology with compact support is given by

H i
W,c(X,Z(n)) := H i(RΓW,c(X,Z(n))).

Remark 7.6. Note that this defines RΓW,c(X,Z(n)) up to a non-unique isomorphism

in D(Z), and the groups H i
W,c(X,Z(n)) are also defined up to a non-unique isomorphism.

In a continuation of this paper we will make use of the determinant detZRΓW,c(X,Z(n))

in the sense of [25], which will be defined up to a canonical isomorphism.

However, we recall from Proposition 5.6 that RΓfg(X,Z(n)) is defined up to a unique

isomorphism in the derived category D(Z). If we could define i∗∞ : RΓfg(X,Z(n)) →
RΓc(GR, X(C),Z(n)) as an explicit, genuine morphism of complexes (not just as a mor-

phism in the derived category D(Z)), this would give us a canonical and functorial defi-

nition for RΓW,c(X,Z(n)).

Case of varieties over finite fields

For varieties over finite fields, our Weil-étale cohomology has a simple description, and it

is Q/Z-dual to the arithmetic homology studied by Geisser in [14].

Proposition 7.7. If X is a variety over a finite field Fq, then assuming Lc(X,n),

there is an isomorphism of complexes

(13) RΓW,c(X,Z(n)) ∼= RHom(RΓ(Xét,Zc(n)),Z[−1]),
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and an isomorphism of finite groups

H i
W,c(X,Z(n)) ∼= Hom(H2−i(Xét,Zc(n)),Q/Z)

∼= H i
c(Xét,Z(n))

∼= Hom(Hc
i−1(Xar,Z(n)),Q/Z),

where Hc
•(Xar,Z(n)) are the arithmetic homology groups defined in [14, §3].

Proof. Under our assumptions, X(C) = ∅, and therefore RΓc(GR, X(C),Z(n)) = 0,

so that RΓW,c(X,Z(n)) ∼= RΓfg(X,Z(n)). Finally, by Proposition 5.4, we have an isomor-

phism RΓfg(X,Z(n)) ∼= RHom(RΓ(Xét,Zc(n)),Z[−1]). We recall from Proposition 4.2

that the groups H i(Xét,Zc(n)) are finite under our assumption.

To relate this to Geisser’s arithmetic homology, according to [14, Theorem 3.1], there

is a long exact sequence

· · · → Hc
i−1(Xét,Z(n))→ Hc

i (Xar,Z(n))→ CHn(X, i− 2n)Q → Hc
i−2(Xét,Z(n))→ · · ·

Here the homological notation means that

Hc
i (Xét,Z(n)) = H−i(Xét,Zc(n)),

CHn(X, i− 2n)Q = Hc
i (Xét,Q(n)) = 0,

and therefore

Hc
i (Xar,Z(n)) ∼= H1−i(Xét,Zc(n)).

Now (13) gives

Ep,q
2 = ExtpZ(H1−q(Xét,Zc(n)),Z) =⇒ Hp+q

W,c (X,Z(n)),

and again, by finiteness of H1−q(Xét,Zc(n)), this spectral sequence is concentrated in

p = 1, where the interesting terms are

Ext1Z(H1−q(Xét,Zc(n)),Z) ∼= Hom(H1−q(Xét,Zc(n)),Q/Z),

so that

H1+i
W,c(X,Z(n)) ∼= Hom(H1−i(Xét,Zc(n)),Q/Z) ∼= Hom(Hc

i (Xar,Z(n)),Q/Z).

Perfectness of the complex

Our next aim is to verify that RΓW,c(X,Z(n)) is a perfect complex. From now on we

tacitly assume Conjecture Lc(Xét, n).
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Lemma 7.8. The groups H i
W,c(X,Z(n)) are finitely generated for all i ∈ Z.

Proof. In the long exact sequence

· · · → H i−1
c (GR, X(C),Z(n))→ H i

W,c(X,Z(n))→ H i
fg(X,Z(n))

Hi(i∗∞)−−−−→ H i
c(GR, X(C),Z(n))→ · · ·

the groups H i
c(GR, X(C),Z(n)) and H i

fg(X,Z(n)) are finitely generated by Proposition 3.2,

and Proposition 5.5, respectively. This implies the finite generation of H i
W,c(X,Z(n)).

Lemma 7.9. One has H i
W,c(X,Z(n)) = 0 for i < 0.

Proof. The definitions of RΓfg(X,Z(n)) and RΓW,c(X,Z(n)) yield exact sequences

H i−1
c (GR, X(C),Z(n))

H i
W,c(X,Z(n))

H i
c(Xét,Z(n)) H i

fg(X,Z(n)) Hom(H1−i(Xét,Zc(n)),Q) H i+1
c (Xét,Z(n))

H i
c(GR, X(C),Z(n))

If i < 0, thenH i
c(Xét,Z(n)) = H i

c(GR, X(C),Z(n)) = 0. Moreover, Hom(H1−i(Xét,Zc(n)),Q) =

0 for i < 0, since H1−i(Xét,Zc(n)) is finite 2-torsion (Proposition 4.2). We conclude that

H i
W,c(X,Z(n)) = H i

fg(X,Z(n)) = 0 for i < 0.

For the vanishing of H i
W,c(X,Z(n)) for i� 0, we first establish the following auxiliary

result.

Lemma 7.10. Let d = dimX. For each prime ` and i ≥ 2d we have

(14) H i
W,c(X,Z(n))⊗ Z` = Ĥ i

c(X[1/`]ét,Z`(n)),

where the right-hand side is defined via lim←−r Ĥ
i
c(X[1/`]ét, µ

⊗n
`r ).

Proof. Consider the commutative diagram with distinguished rows and columns

[RΓ(Xét,Zc(n)),Q[−2]] RΓ̂c(Xét,Z(n)) RΓ̂fg(X,Z(n)) [+1]

[RΓ(Xét,Zc(n)),Q[−2]] RΓc(Xét,Z(n)) RΓfg(X,Z(n)) [+1]

0 RΓ̂c(GR, X(C),Z(n)) RΓ̂c(GR, X(C),Z(n)) 0

[RΓ(Xét,Zc(n)),Q[−1]] RΓ̂c(Xét,Z(n))[1] RΓ̂fg(X,Z(n))[1] [+2]

α̂X,n

id id

αX,n

û∗∞ î∗∞

id

α̂X,n[1]
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Here û∗∞ (resp. î∗∞) is defined as the composition of the canonical morphism u∗∞ (resp.

i∗∞) with the projection to the Tate cohomology

π : RΓc(GR, X(C),Z(n))→ RΓ̂c(GR, X(C),Z(n)).

By Proposition 3.2, H i(π) is an isomorphism for i ≥ 2d − 1. Therefore, the five-lemma

applied to

RΓW,c(X,Z(n)) RΓfg(X,Z(n)) RΓc(GR, X(C),Z(n)) [+1]

RΓ̂fg(X,Z(n)) RΓfg(X,Z(n)) RΓ̂c(GR, X(C),Z(n)) [+1]

f

i∗∞

id π f [1]

î∗∞

shows that for i ≥ 2d holds

H i
W,c(X,Z(n)) ∼= Ĥ i

fg(X,Z(n)).

As in Corollary 5.8, we have for a prime `

Ĥ i
fg(X,Z(n))⊗ Z` ∼= Ĥ i

c(X[1/`]ét,Z`(n)).

Corollary 7.11. One has H i
W,c(X,Z(n)) = 0 for i > 2d+ 1.

Proof. It suffices to verify that H i
W,c(X,Z(n))⊗Z` = 0 for each prime `. Thanks to

the isomorphism (14), this reduces to Ĥ i
c(X[1/`]ét,Z`(n)) = 0 for i > 2d+1, which is true

for the reasons of cohomological dimension [1, Exposé X, Théorème 6.2]. We note that if

` = 2 and X(R) 6= ∅, then the usual étale cohomology has finite 2-torsion in arbitrarily

high degrees. It is important that we consider here the modified cohomology with compact

support Ĥ i
c(−). To obtain the corresponding statement, combine the arguments from [1,

Exposé X] with the well-known computations of modified cohomology for number fields;

cf. [32, Chapter II] and [2], [31].

Summarizing the above observations, we obtain the following result.

Proposition 7.12. Conjecture Lc(Xét, n) implies that RΓW,c(X,Z(n)) is a perfect

complex. More precisely, H i
W,c(X,Z(n)) are finitely generated groups, and H i

W,c(X,Z(n)) =

0 for i /∈ [0, 2 dimX + 1].

Rational coefficients

Proposition 7.13. There is a non-canonical splitting

RΓW,c(X,Z(n))⊗Q ∼= RHom(RΓ(Xét,Zc(n)),Q)[−1]⊕RΓc(GR, X(C),Q(n))[−1].
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Proof. The distinguished triangle defining RΓW,c(X,Z(n)) becomes after tensoring

with Q

RΓW,c(X,Z(n))⊗Q→ RΓfg(X,Z(n))⊗Q i∗∞⊗Q=0−−−−−→ RΓc(GR, X(C),Z(n))⊗Q

→ RΓW,c(X,Z(n))⊗Q[1]

which yields a non-canonical splitting [39, Chapitre II, Corollaire 1.2.6]

RΓW,c(X,Z(n))⊗Q ∼= RΓfg(X,Z(n))⊗Q⊕RΓc(GR, X(C),Z(n))[−1]⊗Q,

and we have already established in Proposition 5.7 that

RΓfg(X,Z(n))⊗Q ∼= RHom(RΓ(Xét,Zc(n)),Q)[−1].

8 Known cases of Conjecture Lc(Xét, n)

Since the main constructions of this paper assume Conjecture Lc(Xét, n), we relate it here

to other known conjectures about the finite generation of étale motivic cohomology, and

also describe certain schemes X for which Lc(Xét, n) holds unconditionally.

Flach and Morin state in [9] a slightly different conjecture L(Xét,−) instead of our

Lc(Xét,−). Taking into account the relation (1) for regular schemes, we can reformulate

their conjecture as follows.

Conjecture 8.1 ([9, Conjecture 3.2; Lemma 3.3]). L(Xét, d−n): for a proper regular

arithmetic scheme X and n < 0, the groups H i(Xét,Zc(n)) are finitely generated for

i ≤ −2n+ 1.

A more precise conjectural description of étale motivic cohomology is [16, Conjec-

ture 4.12], which can be written as follows, again using (1):

Conjecture 8.2. L′(Xét, d−n): for a proper regular arithmetic scheme X and n < 0,

one has

H i(Xét,Zc(n)) =


finitely generated, i ≤ −2n,

finite, i = −2n+ 1,

cofinite type, i ≥ −2n+ 2.

Proposition 8.3. Let X be a proper regular arithmetic scheme of dimension d. Then

for n < 0

Lc(Xét, n)⇐⇒ L(Xét, d− n)⇐⇒ L′(Xét, d− n).



Weil-étale cohomology and duality for arithmetic schemes in negative weights 26

Proof. The nontrivial implications are

L(Xét, d− n) =⇒ Lc(Xét, n), L(Xét, d− n) =⇒ L′(Xét, d− n).

For the first implication, we note that by [9, Proposition 3.4], L(Xét, d − n) implies

the Artin–Verdier duality

H i(Xét,Z(n)) ∼= Hom(H2−i(Xét,Zc(n)),Q/Z) up to finite 2-torsion.

Hence H i(Xét,Zc(n)) is finite 2-torsion for i ≥ 2, and in particular for i > −2n+ 1.

The second implication is also established in [9, Proposition 3.4].

We now list some special cases where Conjecture Lc(Xét, n) is known, and therefore

gives unconditional results. We follow [34, §5] very closely. For an arithmetic scheme X,

we formulate the following conjecture, which is the conjunction of Lc(Xét, n) for all n < 0.

Conjecture 8.4. Lc(Xét): the cohomology groups H i(Xét,Zc(n)) are finitely gener-

ated for all i ∈ Z and n < 0.

This is similar to [34, Definition 5.8], with the only difference that Morin also requires

the finite generation of H i(Xét,Zc(0)) for i ≤ 0. Conjecture Lc(Xét) is known for number

rings, and also for certain varieties over finite fields. As in [37], [11], and [34], we consider

the following class.

Definition 8.5. Let A(Fq) be the full subcategory of the category of smooth pro-

jective varieties over a finite field Fq generated by products of curves and the following

operations.

1) If X and Y lie in A(Fq), then X t Y lies A(Fq).

2) If Y lies in A(Fq) and there are morphisms c : X → Y and c′ : Y → X in the category

of Chow motives such that c′ ◦ c : X → X is a multiplication by constant, then X

lies in A(Fq).

3) If Fqm/Fq is a finite extension and XFm
q

= X ×SpecFq SpecFqm lies in A(Fqm), then

X lies in A(Fq).

4) If X and Y lie in A(Fq), and Y is a closed subscheme of X, then the blowup of X

along Y lies in A(Fq).

The following is similar to [34, Definition 5.9].

Definition 8.6. Let L(Z) be the full subcategory of arithmetic schemes generated

by the following objects:
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� the empty scheme ∅,

� SpecOF for a number field F ,

� varieties X ∈ A(Fq) for any finite field Fq,

and the following operations.

L1) Let X be an arithmetic scheme, Z ⊂ X a closed subscheme and U := X \ Z its

open complement. If two of three schemes X,Z, U lie in L(Z), then the third also

lies in L(Z).

L2) A finite disjoint union X =
∐

1≤j≤pXj lies in L(Z) if and only if each Xj lies in

L(Z).

L3) If V → U is an affine bundle and U lies in L(Z), then V also lies in L(Z).

L4) If {Ui → X}i∈I is a finite surjective family of étale morphisms such that each Ui0,...,ip
lies in L(Z), then X also lies in L(Z).

Proposition 8.7. Conjecture Lc(Xét) holds for any arithmetic scheme X ∈ L(Z).

Proof. See the argument in [34, Proposition 5.10].

Finally, we consider cellular schemes, as in [34, §5.4].

Definition 8.8. Let Y be a separated scheme of finite type over Spec k for a field

k. We say that Y admits a cellular decomposition if there exists a filtration of Y by

reduced closed subschemes

Y red = YN ⊇ YN−1 ⊇ · · · ⊇ Y−1 = ∅

such that Yi \ Yi−1 ∼= Ari
k is isomorphic to an affine space over k.

We say that Y is geometrically cellular if Yk = Y ×Spec k Spec k admits a cellular

decomposition. This is equivalent to the existence of a finite Galois extension k′/k such

that Yk′ admits a cellular decomposition.

Finally, given an S-scheme X → S that is separated and of finite type, we say that X

is geometrically cellular if for each s ∈ S the corresponding fiber Xs is geometrically

cellular.

Proposition 8.9. Let Y be a separated scheme of finite type over SpecFq. If Y is

geometrically cellular, then X ∈ L(Z), and in particular Conjecture Lc(Yét) holds.

If X → SpecOF is a flat, separated scheme of finite type over the ring of integers of a

number field, and X is geometrically cellular, then X ∈ L(Z), and in particular Lc(Xét)

holds.

For a proof, we refer to [34, Proposition 5.14].
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9 Comparison with the complex of Flach and Morin

This paper is based on the ideas of Flach and Morin [9], who gave a similar construction

of Weil-étale cohomology RΓW,c(X,Z(n)) for a proper and regular arithmetic scheme X,

and for any integer weight n ∈ Z. In this section, we will go through the definitions of

[9], to verify the following claim.

Proposition 9.1. Let X be a proper, regular arithmetic scheme, and n < 0. Assume

Conjecture Lc(Xét, n). Then the Weil-étale complex RΓW,c(X,Z(n)) defined above in §7

is isomorphic to the corresponding complex defined in [9].

From now on we tacitly assume Conjecture Lc(Xét, n), which is also equivalent to the

assumptions on motivic cohomology in [9] (see Proposition 8.3). Flach and Morin consider

the case of a proper and regular arithmetic scheme X of equal dimension d. In this case,

we can use the isomorphism (1) to reformulate their constructions in terms of complexes

Zc(n).

Moreover, they work with the Artin–Verdier étale topos X ét, whose definition and

basic properties can be found in [9, §6]. They consider a morphism

αX,n : RHom(RΓ(X,Zc(n)),Q[−2])→ RΓ(X ét,Z(n)),

defined in a similar way to our αX,n (Definition 5.1) using a duality similar to our Theo-

rem I.

The notation in [9] and in this paper is intentionally the same for various objects

and morphisms. However, in this section we will write, for example, αX,n to denote the

morphism of Flach and Morin, to distinguish it from our αX,n, etc. An overline indicates

that the corresponding thing comes from [9] and has something to do with the Artin–

Verdier étale topos.

Lemma 9.2. The square

(15)

RHom(RΓ(X,Zc(n)),Q[−2]) RΓ(X ét,Z(n))

RHom(RΓ(X,Zc(n)),Q[−2]) RΓ(Xét,Z(n))

αX,n

id

αX,n

commutes.

Proof. We recall from Remark 5.2 that αX,n is determined by the maps at the level

of cohomology H i(αX,n). The same is true for αX,n, for the same reasons. Now [9,

Theorem 3.5] defines

H i(αX,n) : Hom(H2−i(X,Zc(n)),Q)
∼=−→ Hom(H2−i(X ét,Zc(n)),Q)→

Hom(H2−i(X ét,Zc(n)),Q/Z)
∼=←− H i(X ét,Z(n)),
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where the last isomorphism is the duality [9, Corollary 6.26]. Similarly, our morphism

αX,n gives

H i(αX,n) : Hom(H2−i(X,Zc(n)),Q)
∼=−→ Hom(H2−i(Xét,Zc(n)),Q)→

Hom(H2−i(Xét,Zc(n)),Q/Z)
∼=←− Ĥ i

c(Xét,Z(n))→ H i(Xét,Z(n)).

The groups Ĥ i
c(Xét,Z(n)) and H i(X ét,Z(n)) are different, but the duality in terms

of H i(X ét,Z(n)) is induced precisely from the duality in terms of Ĥ i
c(Xét,Z(n)) (see [9,

Theorem 6.24]): we have a commutative diagram

RΓ̂c(Xét,Z/mZ(n)) RHom(RΓ(Xét,Z/mZc(n)),Q/Z[−2])

RΓ(X ét,Z/mZ(n)) RHom(RΓ(X ét,Z/mZc(n)),Q/Z[−2])

∼=

∼=

and the diagram

RΓ̂c(Xét,Z(n)) RΓ(Xét,Z(n))

RΓ(X ét,Z(n)

commutes as well. We see that the diagram we are interested in commutes:

Hom(H2−i(X,Zc(n)),Q) H2−i(X ét,Zc(n))D H i(X ét,Z(n))

Hom(H2−i(X,Zc(n)),Q) H2−i(Xét,Zc(n))D Ĥ i
c(Xét,Z(n)) H i(Xét,Z(n))

id

Hi(αX,n)

∼=

Hi(αX,n)

∼=

For brevity, Hom(A,Q/Z) is denoted here by AD.

Taking the cones of αX,n and αX,n, we obtain respectively the complex RΓW (X,Z(n))

of Flach and Morin [9, Definition 3.6] and our complex RΓfg(X,Z(n)) (Definition 5.1

above).

The square (15) induces the following diagram with distinguished rows and columns
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(cf. [35, Proposition 1.4.6]):

(16)

[RΓ(X,Zc(n)),Q[−2]] RΓ(X ét,Z(n)) RΓW (X,Z(n)) [−1]

[RΓ(X,Zc(n)),Q[−2]] RΓ(Xét,Z(n)) RΓfg(X,Z(n)) [−1]

0 RΓ(X(R), τ≥n+1Rπ̂∗Z(n)) RΓ(X(R), τ≥n+1Rπ̂∗Z(n)) 0

[RΓ(X,Zc(n)),Q[−1]] RΓ(X ét,Z(n))[1] RΓW (X,Z(n))[1] [0]

αX,n

id

f

id

αX,n g

id

f [1]

Then [9, Definition 3.23] considers a morphism u∗∞ defined via

(17)

RΓ(X ét,Z(n)) RΓ(Xét,Z(n)) RΓ(X(R), τ≥n+1Rπ̂∗Z(n)) [+1]

RΓW (X∞,Z(n)) RΓ(GR, X(C),Z(n)) RΓ(X(R), τ≥n+1Rπ̂∗Z(n)) [+1]

∃ u∗∞ u∗∞ id u∗∞[1]

Here the complex RΓW (X∞,Z(n)) is defined via the bottom triangle.

Then [9, Proposition 3.24] and our Proposition 7.3 above establish the existence and

uniqueness of morphisms ι∗∞ and i∗∞ which make the triangles below commutative, and

then the Weil-étale complexes are defined as mapping fibers of ι∗∞ and i∗∞:

RΓW,c(X,Z(n)) RΓW,c(X,Z(n))

RΓW (X,Z(n)) RΓ(X ét,Z(n)) RΓfg(X,Z(n)) RΓ(Xét,Z(n))

RΓW (X∞,Z(n)) RΓ(GR, X(C),Z(n))

RΓW,c(X,Z(n))[1] RΓW,c(X,Z(n))[1]

ι∗∞
u∗∞

f

ι∗∞
u∗∞

g

In order to compare the two resulting complexes, we note that u∗∞ is only defined via

(17), so in the diagram below from Figure 1, we can first choose ι∗∞ such that the front

face gives a morphism of triangles. Then we can declare u∗∞ to be the composition ι∗∞ ◦ f .

In this way everything commutes, and we see that RΓW,c(X,Z(n)) ∼= RΓW,c(X,Z(n)).

This concludes the proof of Proposition 9.1.
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RΓW,c(X,Z(n)) RΓW,c(X,Z(n)) 0 [+1]

RΓ(X ét,Z(n)) RΓ(Xét,Z(n)) RΓ(X(R), τ≥n+1Rπ̂∗Z(n)) [+1]

RΓW (X,Z(n)) RΓfg(X,Z(n)) RΓ(X(R), τ≥n+1Rπ̂∗Z(n)) [+1]

RΓW (X∞,Z(n)) RΓ(GR, X(C),Z(n)) RΓ(X(R), τ≥n+1Rπ̂∗Z(n)) [+1]

RΓW,c(X,Z(n))[1] RΓW,c(X,Z(n))[1] 0 [+2]

∼=

u∗∞

f

u∗∞

g id

id

u∗∞[1]

f [1]

ι∗∞ i∗∞ id ι∗∞[1]

∼=

Figure 1: Comparison of the Weil-étale complexes from [9] and this paper, denoted RΓW,c(X,Z(n)) and RΓW,c(X,Z(n)) respec-

tively. The top face of the prism comes from (16). The arrow ι∗∞ is chosen so that the front face is commutative. Then set

u∗∞ = ι∗∞ ◦ f so that the back face is commutative and corresponds to (17).
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A Some homological algebra

This appendix contains some basic results about the derived category of abelian groups

D(Z) which are used throughout the text. The following lemmas are isolated from the

proofs in [9], with some modifications to treat the 2-torsion.

First, recall that every complex of abelian groups A• (not necessarily bounded) is

quasi-isomorphic to its cohomology:

A• ∼=
∐
i∈Z

H i(A•)[−i] ∼=
∏
i∈Z

H i(A•)[−i]

=
(
· · · → H i−1(A•)

0−→ H i(A•)
0−→ H i+1(A•)→ · · ·

)
.

Here
∐

and
∏

denote the coproduct and product in the category of complexes, which

coincide in this case. This gives us a useful expression for morphisms in the derived

category: since HomD(Z)(A,B[i]) ∼= ExtiZ(A,B), and ExtiZ(A,B) = 0 for i > 1, we obtain

HomD(Z)(A
•, B•) ∼= HomD(Z)(

∐
i∈Z

H i(A•)[−i],
∏
j∈Z

Hj(B•)[−j])

∼=
∏
i∈Z

∏
j∈Z

HomD(Z)(H
i(A•), Hj(B•)[i− j])

∼=
∏
i∈Z

(
Hom(H i(A•), H i(B•))⊕ Ext(H i(A•), H i−1(B•))

)
∼=
∏
i∈Z

Hom(H i(A•), H i(B•))⊕
∏
i∈Z

Ext(H i(A•), H i−1(B•)).(18)

Lemma A.1.

1) If C• and C ′• are almost perfect in the sense of Definition 1.1, then the group

HomD(Z)(C
•, C ′•) has no nontrivial divisible subgroups.

2) If A• is a complex such that H i(A•) are finite-dimensional Q-vector spaces and C•

is a complex such that H i(C•) are finitely generated abelian groups, then the group

HomD(Z)(A
•, C•) is divisible.

Proof. In 1), we consider the decomposition (18) for HomD(Z)(C
•, C ′•), and observe

that under our assumptions, both groups∏
i∈Z

Hom(H i(C•), H i(C ′•)) and
∏
i∈Z

Ext(H i(C•), H i−1(C ′•))

are of the form G⊕ T , where G is a finitely generated abelian group and T is 2-torsion.

From this we see that if x ∈ HomD(Z)(C
•, C ′•) is divisible by all powers of 2, then x = 0.
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Similarly, in part 2), we consider the decomposition (18) for HomD(Z)(A
•, C•). Under

our assumptions, Hom(H i(A•), H i(C•)) = 0 for all i, and each Ext(H i(A•), H i−1(C•)) is a

direct sum of finitely many groups isomorphic to Ext(Q,Z), which is divisible. Therefore,

HomD(Z)(A
•, C•) is a direct product of divisible groups, hence divisible.

Recall that Verdier’s axiom (TR1) states that every morphism v : A• → B• can be

completed to a distinguished triangle A•
u−→ B•

v−→ C•
w−→ A•[1]. Axiom (TR3) states that

for every commutative diagram with distinguished rows

(19)

A• B• C• A•[1]

A′• B′• C ′• A′•[1]

u

f

v

g

w

u′ v′ w′

there exists some h : C• → C ′•, which gives a morphism of distinguished triangles

(20)

A• B• C• A•[1]

A′• B′• C ′• A′•[1]

u

f

v

g

w

∃h f [1]

u′ v′ w′

The cone C• in (TR1) and the morphism h in (TR3) are neither unique nor canonical.

Two different cones of the same morphism are necessarily isomorphic, but the isomorphism

between them is not unique, because it is provided by (TR3). Let us recall a useful

argument showing that things are well-defined in some special cases.

Lemma A.2 (≈[3, Proposition 1.1.9, Corollaire 1.1.10]). Consider the derived category

D(A) of an abelian category A.

1) For a commutative diagram (19), assume that the homomorphism of abelian groups

w∗ : HomD(A)(A
•[1], C ′•)→ HomD(A)(C

•, C ′•)

induced by w is trivial. Then there exists a unique morphism h : C• → C ′• that gives

a morphism of triangles (20).

2) For a distinguished triangle A•
u−→ B•

v−→ C•
w−→ A•[1], assume that for any other

cone C ′• of u the morphism w∗ is trivial. Then the cone of u is unique up to a

unique isomorphism.

Proof. In 1), applying HomD(A)(−, C ′•) to the first distinguished triangle, we obtain

an exact sequence of abelian groups

HomD(A)(A
•[1], C ′•)

w∗−→ HomD(A)(C
•, C ′•)

v∗−→ HomD(A)(B
•, C ′•).
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If w∗ = 0, we conclude that v∗ is a monomorphism. This implies that there is a unique

morphism h such that h ◦ v = v′ ◦ g. Now in 2), if C• and C ′• are two different cones of

u, we have a commutative diagram

A• B• C• A•[1]

A• B• C ′• A•[1]

u

id

v

id

w

id

u′ v′ w′

By the triangulated five-lemma, the dashed arrow is an isomorphism, and it is unique

thanks to part 1).

Here is a special case that we need.

Corollary A.3. Consider the derived category D(Z).

1) Suppose we have a commutative diagram with distinguished rows (19), where A• is

a complex such that H i(A•) are finite-dimensional Q-vector spaces and C•, C ′• are

almost perfect complexes in the sense of Definition 1.1. Then there exists a unique

morphism h : C• → C ′• which gives a morphism of triangles (20).

2) For a distinguished triangle

A•
u−→ B•

v−→ C•
w−→ A•[1]

assume that A• is a complex such that H i(A•) are finite-dimensional Q-vector spaces

and C• is an almost perfect complex. Then the cone of u is unique up to a unique

isomorphism.

Proof. In this situation, by Lemma A.1, the group HomD(Z)(C
•, C ′•) has no non-

trivial divisible subgroups, and HomD(Z)(A
•[1], C ′•) is divisible. This means that there

are no nontrivial homomorphisms HomD(Z)(A
•[1], C ′•) → HomD(Z)(C

•, C ′•), and we can

apply Lemma A.2.

Lemma A.4. Suppose that A• and B• are almost of cofinite type in the sense of Defi-

nition 1.1. Then a morphism f : A• → B• is torsion (i.e. a torsion element in the group

HomD(Z)(A
•, B•), i.e. f ⊗Q = 0) if and only if the morphisms H i(f) : H i(A•)→ H i(B•)

are torsion; that is, they are trivial on the maximal divisible subgroups:

(H i(f)div : H i(A•)div → H i(B•)div) = 0.

Proof. Under our assumptions, the groups H i(A•) and H i−1(B•) appearing in (18)

are of cofinite type. We calculate that in this case, Ext(H i(A•), H i−1(B•)) is finite.
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For i � 0, the groups H i(A•) and H i−1(B•) are finite 2-torsion, and therefore

Ext(H i(A•), H i−1(B•)) is finite 2-torsion as well. It follows that the whole product∏
i∈Z Ext(H i(A•), H i−1(B•)) is of the form G ⊕ T , where G is finite and T is (possibly

infinite) 2-torsion. We have therefore (G⊕ T )⊗Q = 0.

Similarly, the group
∏

i∈Z Hom(H i(A•), H i(B•)) consists of some part of the form

Ẑ⊕r ⊕ G, where G is finite, and some possibly infinite 2-torsion part, which is killed by

tensoring with Q. It follows from (18) that there is an isomorphism

HomD(Z)(A
•, B•)⊗Q ∼=

∏
i∈Z

Hom(H i(A•), H i(B•))⊗Q,

f ⊗Q 7→ (H i(f)⊗Q)i∈Z.

Lemma A.5. If A• is a complex of Q-vector spaces and B• is a complex almost of

cofinite type in the sense of Definition 1.1, then there is an isomorphism of abelian groups

HomD(Z)(A
•, B•)

∼=−→
∏
i∈Z

Hom(H i(A•), H i(B•)),

f 7→ (H i(f))i∈Z.

Proof. In the formula (18), if H i(A•) are Q-vector spaces and H i−1(B•) are groups

of cofinite type, then the term Ext(H i(A•), H i−1(B•)) vanishes.

B Cohomology with compact support

For any arithmetic scheme f : X → SpecZ there exists a Nagata compactification

[6, 7] (see also [1, Exposé XVII])

X X

SpecZ

j

f g

where j is an open immersion and g is a proper morphism.

Definition B.1. Let X be an arithmetic scheme and let F be an abelian torsion

sheaf on Xét. Then one defines the cohomology with compact support of F via the

complex

RΓc(Xét,F) := RΓ(Xét, j!F).

For torsion sheaves, this does not depend on the choice of j : X ↪→ X, but here we

would like to fix this choice in order to compare cohomology with compact support on

Xét with the singular cohomology with compact support on X(C).
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Comparison with the analytic cohomology

Definition B.2. Given a Nagata compactification j : X ↪→ X, we consider the corre-

sponding open immersion j(C) : X(C)→ X(C), and for a sheaf F on X(C) we define

Γc(X(C),F) := Γ(X(C), j(C)!F).

Similarly, for a GR-equivariant sheaf on X(C) we define

Γc(GR, X(C),F) := Γ(GR,X(C), j(C)!F).

The canonical reference for the comparison between étale and singular cohomology is

[1, Exposé XI, §4], so we borrow some definitions and notations from there. Let X be an

arithmetic scheme.

1. The base change from SpecZ to SpecC gives us a morphism of sites

γ : XC,ét → Xét.

2. Let Xcl be the site of étale maps f : U → X(C). A covering family in Xcl is a family

of maps {Ui → U} such that U is the union of images of Ui.

(We recall that in the analytic topology, f : U → X(C) is étale if it is a local on the

source homeomorphism: for each u ∈ U there exists an open neighborhood u 3 V
such that f |V : V → f(V ) is a homeomorphism.)

Since the inclusion of an open subset U ⊂ X(C) is an étale map, we have a fully

faithful functor X(C) ⊂ Xcl, and the topology on X(C) is induced by the topology

on Xcl. This gives us a morphism of sites δ : Xcl → X(C), which by the comparison

lemma [1, Exposé III, Théorème 4.1] induces an equivalence of the corresponding

categories of sheaves

δ∗ : Sh(Xcl)→ Sh(X(C)).

3. A morphism of schemes f : X ′C → XC over SpecC is étale if and only if the map

f(C) : X ′(C) → X(C) is étale [20, Exposé XII, Proposition 3.1], and therefore the

functor X ′C  X ′(C) gives us a morphism of sites

ε : Xcl → XC,ét.

Definition B.3. We define the functor

α∗ : Sh(Xét)→ Sh(GR, X(C))

via the composition

Sh(Xét) Sh(XC,ét) Sh(Xcl) Sh(X(C))
γ∗ ε∗ δ∗

'
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As we start from a scheme over SpecZ and base change to SpecC, the resulting

sheaf on X(C) is equivariant with respect to the complex conjugation, hence an object in

Sh(GR, X(C)). For the definition of equivariant sheaves, we refer to the introduction.

Lemma B.4. α∗ preserves colimits.

Proof. α∗ is the composition of the inverse image functors γ∗ and ε∗ (which are left

adjoint) and an equivalence δ∗.

Proposition B.5. Given a sheaf F on Xét, there exists a natural morphism

Γ(Xét,F)→ Γ(GR, X(C), α∗F),

and similarly, for cohomology with compact support,

Γc(Xét,F)→ Γc(GR, X(C), α∗F).

Proof. If j : X ↪→ X is a Nagata compactification, we have the corresponding com-

pactification j(C) : X(C) ↪→ X(C). The extension by zero morphism j(C)! : Sh(X(C))→
Sh(X(C)) restricts to the subcategory of GR-equivariant sheaves: if F is a GR-equivariant

sheaf on X(C), then j(C)!F is a GR-equivariant sheaf on X(C). From the definition of

α∗, we see that that there is a commutative diagram

Sh(Xét) Sh(GR, X(C))

Sh(Xét) Sh(GR,X(C))

α∗

j! j(C)!

α∗X

—this diagram commutes for representable étale sheaves, and then every étale sheaf is a

colimit of representable sheaves, and α∗, j!, α
∗
X, j(C)! preserve colimits, as left adjoints.

The morphism in question is given by

Γc(Xét,F) := Γ(Xét, j!F)→ Γ(GR,X(C), α∗Xj!F)

= Γ(GR,X(C), j(C)! α
∗F) =: Γc(GR, X(C), α∗F).

The morphism α is also discussed in [9, Appendix A], but Flach and Morin work

with proper schemes; the above remarks are to make sure that everything works fine for

compactifications.
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Modified étale cohomology

Here we briefly review the modified étale cohomology with compact support

RΓ̂c(Xét,−). It was introduced by Th. Zink in [21, Appendix 2] for the case of num-

ber rings X = SpecOK,S, and it is also discussed in [32, §II.2]. The general definition for

X → SpecZ is treated in [9, §6.7] and [17, §2].

Thanks to the Leray spectral sequence RΓ(Xét,−) ∼= RΓ(SpecZét,−) ◦Rg∗, we have

RΓc(Xét,F) := RΓ(Xét, j!F) ∼= RΓ((SpecZ)ét, Rf!F), where Rf!F := Rg∗j!F .

First we recall that for a finite group G and a G-module A the corresponding group

cohomology H i(G,A) (resp. Tate cohomology Ĥ i(G,A)) can be defined in terms of res-

olutions P• (resp. complete resolutions P̂•) of Z by free ZG-modules (see e.g. [5, Chap-

ter VI]). More generally, if A• is a bounded (cohomological) complex of G-modules, we

obtain a double complex of abelian groups Hom••(P•, A
•) (resp. Hom••(P̂•, A

•)), and it

makes sense to define the corresponding group hypercohomology (resp. Tate hyper-

cohomology) via the complexes

RΓ(G,A•) := Tot⊕(Hom••(P•, A
•)), RΓ̂(G,A•) := Tot⊕(Hom••(P̂•, A

•)).

Now if F is an abelian sheaf on (SpecZ)ét, then the corresponding modified coho-

mology with compact support is characterized by the distinguished triangle

RΓ̂c((SpecZ)ét,F)→ RΓ((SpecZ)ét,F)→ RΓ̂(GR, v
∗F)→ RΓ̂c((SpecZ)ét,F)[1]

Here v : SpecR → SpecZ is the canonical morphism, and v∗F is the corresponding

sheaf on (SpecR)ét, which can be viewed as a GR-module by [1, Exposé VII, 2.3], and

RΓ̂(GR, v
∗F) denotes the corresponding Tate cohomology.

In general, given an arithmetic scheme X → SpecZ and a torsion abelian sheaf F on

Xét, we choose a Nagata compactification as above and set

RΓ̂c(Xét,F) := RΓ̂c((SpecZ)ét, Rf!F).

We have a natural morphism

RΓ̂c(Xét,F)→ RΓc(Xét,F),

which is an isomorphism if X(R) = ∅. In general, Tate cohomology Ĥ i(GR,−) is annihi-

lated by multiplication by 2 = #GR, and therefore Ĥ i
c(Xét,F)→ H i

c(Xét,F) has 2-torsion

kernel and cokernel.

For canonicity and functoriality, I refer to [17, §2].
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Marie SGA 41
2
, Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et

J. L. Verdier.

[9] Matthias Flach and Baptiste Morin, Weil-étale cohomology and zeta-values

of proper regular arithmetic schemes, Doc. Math. 23 (2018), 1425–1560.

[10] Thomas Geisser, Motivic cohomology over Dedekind rings, Math. Z. 248 (2004),

no. 4, 773–794.

[11] , Weil-étale cohomology over finite fields, Math. Ann. 330 (2004), no. 4, 665–

692.



Weil-étale cohomology and duality for arithmetic schemes in negative weights 40

[12] , Motivic cohomology, K-theory and topological cyclic homology, Handbook

of K-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 193–234.

[13] , Arithmetic cohomology over finite fields and special values of ζ-functions,

Duke Math. J. 133 (2006), no. 1, 27–57.

[14] , Arithmetic homology and an integral version of Kato’s conjecture, J. Reine

Angew. Math. 644 (2010), 1–22.

[15] , Duality via cycle complexes, Ann. of Math. (2) 172 (2010), no. 2, 1095–1126.

[16] , On the structure of étale motivic cohomology, J. Pure Appl. Algebra 221

(2017), no. 7, 1614–1628.

[17] Thomas Geisser and Alexander Schmidt, Poitou-Tate duality for arithmetic

schemes, Compos. Math. 154 (2018), no. 9, 2020–2044.
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Sup. (4) 6 (1973), 521–552 (1974).

[32] J. S. Milne, Arithmetic duality theorems, second ed., BookSurge, LLC, Charleston,

SC, 2006.

[33] Baptiste Morin, Sur le topos weil-étale d’un corps de nombres, 2008, PhD thesis,
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Callejón de Jalisco, Col. Valenciana

36023 Guanajuato, México
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