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0 Motivation

Let us consider an arithmetic scheme X:

X
l separated

of finite type
SpecZ
We may associate to it the corresponding zeta function, which is defined by the Euler product
1
o= 1 =y

xeXp

where Xy denotes the set of closed points of X, and N(x) is the cardinality of the residue field of x. For
instance, if X = Spec Z, we recover the usual Riemann zeta function {(s); more generally, if X = Spec Of is
the spectrum of a number ring, we obtain the Dedekind zeta function {r(s). The above product converges
for Res > dim X, and from now on I will also make the following assumption.

Conjecture. {(X,s) has a meromorphic continuation to the whole complex plane, which we also denote by (X, s).
For each integer n € Z, one might ask about the following two quantities:
1) dy = ords—y, {(X,s) := the vanishing order at s = n;
2) the corresponding special value, i.e. the leading term of the Taylor expansion at s = n:

¢ (X, n) = lim(s — )~ {(X, 5).

Cohomological interpretation of special values may be traced to 1839 when Dicichlet published the
class number formula. The Dedekind zeta function {¢(s) has a zero of order dy = r{ +r, — 1 ats = 0,
where r; and 2 is the number of real and complex places of F, and the corresponding special value is

{i(0) = — 2F

— Ry,
#‘up F

where hp is the class number, ur = (O?)tm is the group of roots of unity in F, and R is the regulator.
The above formula may be written as

#H' (Spec O, Gpy) #HO(Spec Of, Z¢(0))
*(Spec Of,0) = — Rp = — Rg,
¢" (Spec Or, 0) #HO(Spec O, G )rors + #H1(Spec O, Z°(0) )tors

where Z°(0) = G, [1] (see below).




In this sense, the first results about finite generation of certain motivic cohomology groups were ob-
tained in the XIX century:

e finiteness of the class group is finiteness of #H°(Spec Of, Z¢(0));

e Dirichlet’s unit theorem says that H~!(Spec O, Z¢(0)) is a group of finite rank r; +r, — 1.

Here I won't get into the details about the classical conjectures of Lichtenbaum, Beilinson, and others;
instead I refer to the survey [Kah2005]. More recently, Lichtenbaum envisioned the existence of certain
cohomology theory, named Weil-étale cohomology, that (conjecturally) encodes the information about
vanishing orders and special values of {(X,s). Here is a very brief history of the subject.

e Lichtenbaum first studied Weil-étale cohomology for varieties over finite fields in [Lic2005]. Further
results were obtained by Thomas Geisser in [Gei2004].

e In [Lic2009] Lichtenbaum considered the case of number rings X = Spec Or and n = 0.

e Baptiste Morin constructed in [Mor2014] Weil-étale cohomology for the case of regular, proper X
and n = 0.

e Matthias Flach and Baptiste Morin generalized this in [FM2016] to all n € Z, again for regular,
proper X.

I am investigating the following situation.
My goal. Construct and study Weil-étale cohomology for an arbitrary arithmetic scheme X and n < 0.

So from now on, X will denote any arithmetic scheme and #n will denote a strictly negative integer.
Removing the assumptions on X in theory should make everything harder, but at the same time, restricting
the attention to the case of n < 0 simplifies many things. I am following the ideas of Flach and Morin, and
in particular, when X is regular and proper, the constructions and conjectures that I am going to describe
coincide with theirs. Not out of immodesty, but due to the lack of time, I will focus on my case and outline
the involved tools and definitions.

1 Motivic cohomology

There are several constructions of motivic cohomology. The one that is suitable for arithmetic schemes
originates from the seminal paper of Spencer Bloch on higher Chow groups [Blo1986]. Bloch’s ideas have
been further developed by Marc Levine and other mathematicians, and the corresponding techniques have
been also applied to arithmetic schemes (see Geisser’s survey [Gei2005]).
Geisser in [Gei2010] introduced dualizing cycle complexes, which is a certain variation of Bloch’s cycle
complexes:
(X,n) ~» Z(n), a complex of sheaves on Xj.

For those familiar with motivic cohomology, if X is an equidimensional scheme of dimension d, then
Z°(n) = Z(d —n)[2d],

where the right hand side is the sheaf defined from Bloch’s cycle complex. The same relation would hold
with the motivic complex of Voevodsky, if we work with smooth schemes over a field. This is not the case
of our interest, however.

Another important thing to keep in mind is that the (hyper)cohomology of Z¢(n) behaves very much
like Borel-Moore homology in the topological setting. Namely, if X is a locally compact topological space,



U C X is its open subspace, and Z := X \ U is the corresponding closed complement, in such a case I will
say that we have an open-closed decomposition

U—X<+2Z
This gives a distinguished triangle in the derived category of abelian groups
RTpm(Z,Z) — RUgpm(X,Z) — RTpm (U, Z) — - -+ [1]
simply because by definition (well, not the original one of Borel and Moore, but the one of Verdier),
RTpMm(X,Z) := RT(X, p'Z) = RHom(RT (X, Z),Z),

where p: X — x is the projection to a point. So the above distinguished triangle is nothing more than the
Verdier dual of the distinguished triangle for cohomology with compact support

RT.(U,Z) = RT(X,Z) — RT(Z,Z) — ---[1]

Similarly, for Geisser’s complexes Z*(n), an open-closed decomposition of schemes gives a distin-
guished triangle
RT(Zg, Z(n)) — RT(Xg, Z°(n)) — RT(Ug, Z°(n)) — - - - [1]

The intuition behind this is that initially, Z(n) has an ad hoc definition as a cycle complex, but then it is
possible to identify it as a dualizing complex in certain arithmetic contexts. This is what Geisser does in
[Gei2010].

In general, not much is known about the cohomology of Z°(n), and to proceed, we need to make the
following assumption.

Conjecture L¢(Xy, n). The (hyper)cohomology groups H! (X, Z¢(n)) are finitely generated.

2 Weil-étale complexes

I don’t have enough time to enter in all the gory details of the construction of Weil-étale complexes (for
this, I refer to the appendix), so let me state what kind of object it is.

Output of the construction. Assume that the conjecture L°(Xg, n) holds.
1) There exists a perfect object in the derived category of abelian groups
RTw (X, Z(n)),

which we call Weil-étale cohomology with compact support. That is, the corresponding cohomology

groups ‘ .
Hyyo (X, Z(n)) := H'(RTw,(X, Z(n)))

are finitely generated and vanish for almost all i.

2) After tensoring with IR, this complex splits (non-canonically) as

RTw(X,Z(n)) ® R = RHom(RT (X4, Z (n)), R)[—1] & RT(Gr, X(C), (27ti)" R)[—1].



I already briefly explained what is RT(Xg, Z(n)). As for the complex RI(Gg, X(C), (27i)" R), it
stays for the Gr-equivariant cohomology with compact support of the space of complex points X(C),
where GR := Gal(C/R). Namely, Gr acts by conjugation both on X(C) and on the coefficients (27i)" R,
which means that the complex RT.(X(C), (27ti)" R) carries a natural Gr-action, and we can consider the
cohomology of GR acting on that complex (this is a particular case of equivariant sheaf cohomology, as
introduced by Grothendieck in the Tohoku paper). In terms of cohomology groups, there is a spectral
sequence

E} = HP(Gg, HI(X(C), (27i)" R)) = H!™1(Gg, X(C), (271i)" R).

In this particular case, however, we deal simply with the fixed points of the Gr-action on H:(X(C), (27ti)" R):
H!(GRr, X(C), (27ti)" R) = H.(X(C), (27ti)" R)°®

—this is because for any Z /2Z-module A, the cohomology groups H” (GR, A) are 2-torsion for p > 0, and
we deal with R-vector spaces. However, for instance for integral coefficients (271i)" Z, the above spectral
sequence does need to degenerate, and the groups H:(GRr, X(C), (27ti)" Z) are more complicated.

3 Regulator

Now to extract the special values of zeta functions, we also need some kind of a regulator (generalizing
the regulator of a number field). Normally in this setting, it should be a morphism

motivic cohomology

Reg: (higher Chow groups)

of X — Deligne (co)homology of X(C).

We use the construction of Matt Kerr, James Lewis, and Stefan Miiller-Stach from [KLMS2006]. I won't
recall the details on Deligne (co)homology here, because it turns out that at the end of the day, thanks to
our assumption n < 0, things simplify tremendously, and we obtain a morphism

Reg: RT(Xg,Z(n)) — RUpp(GRr, X(C), (271)" R)[1].
Unfortunately, the construction of Kerr, Lewis, and Miiller-Stach works under a rather severe restriction.
Drawback. We need to assume that Xc is smooth and quasi-projective.

However, since in our particular case of n < 0, the regulator has a simpler target (Gr-equivariant
Borel-Moore homology of X(C)), one might wonder if there is a simpler definition, requiring less from X.

Question. Is it possible to define a requlator in our setting under less restrictive assumptions on X?

The regulator is supposed to satisfy the following condition.
Conjecture B(X, n). The R-dual to the requlator map
Reg”: RT.(Gg, X(C), (27ti)" R)[—1] — RHom(RT (Xs, Z°(n)), R)

is a quasi-isomorphism of complexes.



Now let’s consider the morphism

defined by

RTwe(X,Z(n)) @ R =% RTy(X, Z(n)) @ R[1]

RTp (X,Z(n)) ® R
-1 @
RT¢(Gg, X(C), (27ti)" R)[—1]

lRegV

RHom (RT(Xg, Z¢(n)), R)

[

RHom(RT(Xg, Z¢(n)),R)| RT(Gg, X(C), (27ti)" R)[~1]

RHom(RT(Xy, Z¢(1n)),R) & RTe(Gr, X(C), (27i)" R)

RTw (X, Z(n)) @ R[1]

Proposition. Assume that the conjectures L(Xg,n) and B(X,n) hold. Then the above morphism — 6 turns
Hyy (X, Z(n)) ® R into an acyclic complex of finite dimensional vector spaces

c = Hiy (X, Z(n) ® R =5 Hig L (X, Z(n)) R —% HF2(X, Z(n)) R = - -

this is actually clear from the above definition, once we assume that Re¢" is a quasi-isomorphism.
y 8 q P

We now use determinants of complexes, defined by Finn Knudsen and David Mumford in [KM1976].
In the generality we need, the determinant canonically associates to a perfect complex of R-modules a free

R-module of rank 1:

C* ~ detg C*.

The determinant is functorial on the subcategory given by perfect complexes and isomorphisms in D(R-Mod),
it is compatible with distinguished triangles in a suitable sense, with base change, etc. Without getting
into details, let me just say that the properties of the determinant imply that the long exact sequence from
the last proposition induces a canonical isomorphism

A: R S (detz RTyo(X,Z(n)) ® R,

allowing us to treat detz RT'w (X, Z(n)) as a lattice in R.



4 The main conjecture about special values

Armed with the morphism A, we are ready to state our conjecture about vanishing orders and special
values of the zeta function.

Conjecture C(X, n). For an arithmetic scheme X and n < 0

a) assume that the conjecture L€ (X, n) holds;

b) assume that Xc¢ is smooth, quasi-projective, so that the regulator morphism Reg exists; assume that the
conjecture B(X,n) holds;

c) assume that {(X,s) has a meromorphic continuation near s = n.
Then
1) the special value {*(X,n) is given up to sign by
M (X,n)7Y) - Z = detz RTw (X, Z(n)).

2) the vanishing order of {(X,n) at s = n is given by the weighted alternating sum of ranks of the corresponding
Weil-étale cohomology groups:

ords—y {(X,s) = Y (=1)"-i-rkz Hiy (X, Z(n)).
i€Z

Of course, one can define any kind of complexes and formulate any conjectures about them. The con-
jecture C(X, n) is plausible because when X is regular and proper, then it is equivalent to the conjectures
stated by Flach and Morin in [FM2016], and they showed in particular that for smooth schemes their spe-
cial value conjecture is compatible with the Tamagawa number conjecture of Bloch, Kato, Fontaine, and
Perrin-Riou (see [FPR1994]).

Even for some easy examples, it is not trivial at all to calculate Weil-étale cohomology and verify
C(X, n) directly: among other things, that would require calculation of motivic cohomology. Let us see a
couple of examples for the vanishing orders, as it is much easier to count ranks of groups. It is easy to
check that under the assumptions a) and b) made in the conjecture, we have

Y (=1)"-i-rkz Hiy (X, Z(n)) = }_(-1)" dimg H.(Gg, X(C), (27i)" R).

i€Z i€Z
Namely, we may use the splitting

RTw(X,Z(n)) ® R = RHom(RI' (X4, Z (1)), R)[—1] ® RT(GRr, X(C), (27ti)" R)[—1]
and the conjectural quasi-isomorphism
Reg": RT.(Gg, X(C), (271i)" R)[—1] = RHom(RT(Xg, Z°(n)), R).
This all means that the conjecture actually says that
ords—y, {(X,s) = x(R[¢(Gr, X(C), (27i)" R))

is the usual Euler characteristic of a very specific and computable complex.



1) For the case of a number ring X = Spec Of, the space X(C) consists of 71 + 2 rp points, corresponding
to the real places of F and complex places coming in conjugate pairs:

Q Q Q e o .. e
. . - . < > < > < >
r1 points 2y points
The complex RT.(X(C), (27ti)" R) in this case has just a single R-vector space in degree 0, namely

V= (2mi)"R)™1 @ ((2mi)" R @ (27ti)" R) "2,

where GR acts on ((271i)" R)®"1 by complex conjugation, while on ((271i)" R & (27ti)" R)®"2 the
action is given by (z1,z2) — (Z2,27) on each summand (271i)" R @ (271i)" R. We see that

X(RTe(Gr, X(C), (271i)" R)) = dimyg VCK = {”' n odd,
1+ 12, N even,

and this agrees with vanishing orders of the Dedekind zeta function {(Spec Of, s) at strictly negative
integers.

2) If X is a variety over ]Fq, then

#X (F
2(X,5) = Z(X,q7%) = exp (Z (k i 07’“)

k>1

is Weil’s zeta function, which has no zeros or poles for s < 0. This is not quite obvious, but it may
be seen from the Weil conjectures that if s is a pole or zero, then it should satisfy

Res=1i/2, 0<i<2dimX
(see e.g. [Kat1994, p. 26-27]). This agrees with the fact that trivially,

X(RT:(GRr, X(C), (2i)"R)) = 0.

5 Stability properties

So we stated the conjecture C(X, n), and it is equivalent to the conjectures of Flach and Morin for X regular,
proper. This is not a big deal, because from the very beginning, the construction of RI'y (X, Z(n)) follows
theirs, with the difference that in the case n < 0 certain things actually become simpler. Now I will explain
how new results may be obtained.

The following properties are clear from the definition of the zeta function of an arithmetic scheme:

1) If U — X « Z is an open-closed decomposition, then

0(X,s) = 4(U,s) - L(Z,5).



2) For r > 0, for the affine space Ay := Al, x X
(A, s) = (X5 —1).
This suggests the following result.

Theorem.

1) If U — X < Z is an open-closed decomposition of an arithmetic scheme, then if two out of three conjectures
C(U,n), C(X,n), C(Z,n) hold, then the other one holds as well.

2) The conjecture C(A%,n) is equivalent to C(X,n —r).
Again, it will be easier to explain this for vanishing orders. As I mentioned, the conjecture actually
says that
ords—, ((X,s) = x(RT¢(Gr, X(C), (271i)" R)).
In 1), we have the following distinguished triangle for Ggr-equivariant cohomology with compact support:
RT(Gr, U(C), (2mi)"R) — RT:(GRr, X(C), (271i)" R) — RI(GR, Z(C), (27ti)" R) — - - - [1]
and therefore
X(RT¢(GRr, X(C), (2mi)"R)) = x(RT¢(Gr, U(C), (271i)" R)) + x(RT(GRr, Z(C), (27i)" R)).
In 2), we need to check that

*) X(RT:(GRr,C" x X(C), (2mi)"R)) = x(R[(Gg, X(C), (27i)""R)),
and in fact, we have a Gr-equivariant quasi-isomorphism of complexes
RT(C" x X(C), (27i)" R) ~ RT(X(C), (27i)" " R)[—2r],

where the shift by —2r does not affect the Euler characteristic.

As for the special values part of the conjecture, in 1) one needs to use the “Borel-Moore” triangle
RT(Zg, Z(n)) — RT(Xg, Z°(n)) — RT(Ug, Z(n)) — - - - [1]
which in turn gives
RHom(RT (Ug, Z(n)), R) — RHom(RT (Xg, Z(n)),R) = RHom(RT (Zg, Z(n)),R) — - - - [1]
This may be combined with the above triangle for RT(Ggr, (—)(C), (27ti)" R) and the splittings
Rl (=, Z(n)) @R = RHom(RT((—)a, Z(1)), R)[-1] @ RTc(Gr, (=)(C), (2711)" R)[~1]

(those are not canonical, but may be chosen in a way compatible with the triangles).

In 2), the key idea is that if p: A%, — X is the canonical projection, then there is a quasi-isomorphism
of complexes of sheaves on Xy

RpZ°(n) ~Z(n—r)[2r],
so that
RT(AY 4, Z(n)) ~ RT(Xg, Z(n — 1)) [2r].

This corresponds to the formula (*) (the shifts differ by a sign because (*) is written for cohomology with
compact support, while the above formula is morally for the dual “Borel-Moore homology”).

* * *

All this means that with the established machinery, we can take as a starting point certain schemes
for which the conjecture is true (e.g. schemes for which the Tamagawa number conjecture is known),
and then, using operations like open-closed decompositions and affine bundles, construct new schemes,
possibly singular, for which the conjecture holds as well.



A Definition of Weil-étale complexes

Here I outline the present construction of Weil-étale complexes for the case n < 0. Following [FM2016],
we consider the complex of torsion sheaves on Xy

Z(n) = “Q/Z (m)[~1] := @) lim jpu"[1]
p r

Here j,: X[1/p] — X is the canonical open immersion, by y,» we denote the sheaf of roots of unity on
X[1/ple, and its twist by n < 0 is defined by

y?" := Homyqy /] (ﬂg(fn),Z/pr).

Then the definition of Weil-étale cohomology is summarized by the following diagram in the derived
category of abelian groups:

Rl (X, Z(n))

|

RHom(RT (Xg, Z¢(n)),Q[~2]) —— RT.(Xg, Z(n)) ————— RTj(X,Z(n)) —— RHom(RT(Xg, Z¢(n)),Q[~1])

| [+~ |

0 — RT(Gg, X(C), (27t)" Z) % RT.(Gg, X(C), (2ri)" Z) —— 0[1]

|

RTw,(X, Z(n))[1]

Here is how this diagram is built.
1) Using a duality theorem from [Gei2010], we define a morphism in the derived category of abelian
groups
axn: RHom(RT(Xg, Z°(n)), Q[—2]) — RTc(Xs, Z(n)).
2) We pick a cone of ax , and call it RT (X, Z(n)).
3) Then we define a canonical morphism of complexes
uy,: RU¢(Xg, Z(n)) — RI(GRr, X(C), (2mi)" Z)
(it is a kind of comparison morphism between étale and singular cohomology), and check that
uyp,onx, =0
in the derived category. This implies that there is a morphism in the derived category
it RTg (X, Z(n)) — RT(GR, X(C), (271i)" Z)
(see the diagram).

4) We pick a mapping fiber of i, and call it RT'w (X, Z(n)).



In step 2), it is possible to represent RT';, (X, Z(n)) by a canonical complex. In step 3), in fact there is a
unique iy, sitting in the commutative diagram, but the outlined argument gives it only as a morphism in the
derived category, not a genuine morphism of complexes. Therefore, RT'w (X, Z(n)) is defined only up to
a non-canonical isomorphism. This is bad not only for aesthetical reasons, but causes technical problems
in practice. This is quite unsatisfactory, but works for our purposes, because detz RT'w (X, Z(n)) is
canonically defined.

Question. Is there a canonical way to define RTw (X, Z(n))?

As all the problems come from the non-functoriality of cones, working instead with stable co-categories
(see [Lur2006]) might be helpful here.

Here are some properties of the complexes and morphisms in the diagram from the previous page:

a) The groups Hi(Xy, Z(n)) are Q/Z-dual to finitely generated abelian groups. In particular, we have
RT(Xe, Z(n)) ® R ~ 0.

b) H}g(X,Z(n)) = Hi(Rng(X,Z(n))) are finitely generated abelian groups (hence the notation “fg”).

Moreover, H}g(X,Z(n)) = 0 for i < 0 and it is a finite 2-torsion group for i > 0. The 2-torsion
comes from the real points X(RR).

¢) The morphism ig, is torsion in the derived category; in particular, ij, ® R = 0.

d) RT(X(C), (27ti)" Z) is a perfect complex. As for the equivariant cohomology RT.(Gg, X(C), (27ti)" Z),
then, unless X(R) = @, the groups H.(Gg,X(C), (27i)" Z) have finite 2-torsion in arbitrarily
high degrees, coming from the cohomology of Ggr = Z/2Z. It has the same nature as the 2-
torsion in Hfig(X,Z(n)), and in fact H'(i%,) is an isomorphism for i > 0. As a result, the complex

RTw (X, Z(n)) is bounded.

Once we tensor the diagram on the previous page with RR, thanks to a) and c), we obtain

RTw.(X,Z(n)) ®R

|

RHom(RT(X, Z°(n)), R[~2]) — 0 — RTg(X,Z(n)) © R —— RHom(RT'(Xg, Z%(n)), R[~1])

lo

RT:(GRr, X(C), (2mi)" R)

|

RTw.(X,Z(n)) ® R[1]

this explains the splitting

RTw(X,Z(n)) ® R = RHom(RT' (X4, Z (n)), R)[—1] & RT(Gr, X(C), (27ti)" R)[—1].
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