THE MOVING LEMMA
FOR HIGHER CHOW GROUPS

S. BLOCH

0. Infroduction

bea quasi-projective algebraic k-scheme, where & is a field. Let
be Zariski open, and write ¥ = X — U/ . Let ZX, 4y, 2w, ¥,
- be the simplicial abelian groups whose homotopy computes the
"how groups {1]. Writing

A" = Spec (k[t LTI WY (Zfr— I)) ’

mition .Z°(X, #) is the free abelian group on irreducible subvarieties
A" meeting all faces properly. We write

CH'(X,n)=H(Z'(X, ).

'fa- left-exact sequence
0-2Z(Y. )= 2(x, - Z(U, )

e tight-hand arrow fails to be surjective because cycles meeting
perly on U x A" can have closures on X x A" which do not,
se of this paper is to prove

Tem (0.1) (Moving lemma). Themap 2(X,)/Z(Y,") — Z(U,)
olopy equivalence.

ary (0.2). Assume Y ¢ X has pure codimension d , so cycles of
Sion p on Y have codimension d+p on X . Then there is a long

.Ql_ience

S CH'(Y  n)— CHP(x. n) = CH™ (U | n)

T = CHAY,L 0) - CHM™M (X, 0y - CHPY(U, 0) - 0.

OV_ing lemma was claimed in [1], but A. Suslin pointed out that
given there was not correct. A key ingredient in the present

be work of M. Spivakovsky {7]. I am indebted to him for a very
Tversation. I should mention also that, recently, M. Levine [6]
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has given an alternative proof of the main resuit in [1] (relating the highe,
Chow groups ® Q with graded pieces of the y-filiration on K-theory 2 Q)
which avoids the moving lemma altogether.

In outline, the proof of (0.1) is as follows. Let S, = (A')" anq ley
p:Z — S, beaquasiprojective morphism. We assume p—i(SU"_U{faCes})
is dense in Z . We consider a tower
(0.3) Sy =Sy = =S,
where each map is the blowup with center an intersection of distinguishey
divisors. Distinguished divisors on S, are just the codimension-one faces,
and distinguished divisors on S, are defined mductively to be the strict
transforms of distinguished divisors on S,_, together with the exceptional
divisor. Let A" = Spec(k[x,, -« , x,]). Al cach vertex v € S, there are
distinguished coordinates, and hence a rational map AE = A" Sy
which maps a neighborhood of 0 isomorphically to a neighborhood of v
in Sy . The compositions

L A:: ==+ Sy = 5,
n:HnU:HA: — 8,
are cverywhere regular. We write
" iski ia” s —U{faces}))
n Z = Zariski closure of (I_ [ A, %s, P o
in HA: xs, Z-

!
The basic point {2.1.2) is that there exists a tower (0.3} such that ?’IZ
. . . . ' . n-
meets faces properly, i.e. that the inverse image 12 rZ oﬂa codt.meniod
d intersection of distinguished divisors on [[A] bas codimension ;Dor:
(By definition, distinguished divisors on A" are defined by scttlnguenw
‘ . . se
dinates equal 1o zero.) When Z — S, is a divisor, this is a conseq
of the main theorem in [7]. i
- . . " o 135_
The rest of the argument consists essentially in con's..trucung.holl‘l‘loll:{apther
The situation is complicated and difficull to summarize con01§eh)’-varieties
than working with cycles on X x A", we projcc? and work ;ﬂt S ariely
over A" . Essentially, one first passes from a vanety over AT 10

; ets
over (A" (cf. (4.1.3)). Then, by the process ouiimeﬂd above;e?;‘:nf "
a variety over [JA’. Finally, by subdividing the A, . on€¢? 55 18

R . emion ey
a variety over A”. What must be shown is that this whole prd
homotopic to the identity. didate fof the

It is possible to use aigebraic cycles to construct a cgn 1;: or :
category of mixed Tate motives over a field F [2, 3. Thfs ca og a’
as the category of finite-dimensional graded representations

arises
ade
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pro-) Lie algebra .7}, =% &% ,&-- . In§5, (0.1) is used to construct
4 theory of specialization, at least in equal characteristic, for these motives.
SuppOSE F isthe quoticn.t field of a discrel_f_: valuation ring & with residue
feld k. We assume & is a k-algebra. <% _, Is the pro-object dual 1o

F* © Q. so the valuation F™ — Z gives a2 homomorphism of graded
Lic algebras val 1 Q_, — %, We define a specialization Lie algebra
pomommorphism depending on the choice of a uniformizing element 7 ¢
F,sp, ' -Z — 7. The image of sp_ centralizes val. If M is a mixed
Tate motive over F corresponding to a Lie algebra representation P
Z - End(M), we write ¥_(M) for the mixed Tate motive over &
corresponding to posp_ . The endomorphism p(val(1)} commutes with
spn(_gi) and so induces an endomorphism of degree —1,

N (M) =¥ (M)(-1).
A mixed Tate motive over Spec(@) should then be a triple
(Mg, M, , w)
where M, (resp. M, ) is a mixed Tate motive over F {resp. k), and
w: M, — ket{N) c W (M)
is a map of 2] -modules.

[want {0 acknowledge considerable help from K. Kato and M. Saito in
understanding specialization.

1. Moving by blowup

(1.1) The basic idea. In this section we describe the basic method of
blowing up which is employed in the moving lemma. Let S be a smooth
q_ua_Si-Drojcctive variety over a field &, and let Dy, -+, D, be smooth
divisors on S. Assume all intersections £, = D,-] N--ND, are transverse
‘Of fmpty). Let z: 7 —.S be the blowup of S along D, Define divisors
Di _ ; D:m on T by taking D:m to be the exceptional divisor and

« = Stniet transform of D,, i < n. Note that the divisors D! on T have
¢ same transversal intersection property as the D, on §.
°bjeci Z, be I_he.f (13 subcategory of the catcgc_»ry of .schen}es over S whqse
“umbs are varieties I.,f" obtained frgm S by iterating this process a finite
cau, er of t.xmes. S 1s the final object in % . Note that cach U comes

*Pbed with a finite set of smooth Cartier divisors 4, --- , §,, meeting

N Sversally. We will refer to the 9§, as distinguished divisors. Intersec-

on C . \ )
n: of distinguished divisors are called faces. Faces of dimension ( are
Ces.
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FIGURE 3

resulting scheme T (illustrated in the example with a peniagon
stingunished divisors) no longer has a natural linear structure. The
ous” triangulation illustrated by dotted lines in the figure cannot be
ed algebro-geometrically. Instead we will show there are local coor-
: -, 1, ., in the neighborhood of each vertex v € T such
1 define the distinguished divisors in a neighborhood of v,
uch that the rational map g, : A, = Spec(k[x, e Xy D T
‘an everywhere regular map

"
7, A, —§

Figure 2

Let /: X — § be a quasiprojective morphism of schemes. We saif
f (or X)) meets faces properly if for any face ¢ C X of codimension
r, f_i(a) has codimension > r in X. We always assume f(X)}
|J{distingunished divisors}. For z : T — S in ., the strict transforin
f X' — T istheclosure in X xg 7 of

n the original choice of p € §') we arrive at the situation which is
i in Figure 3.

» =1 canbe identified as coordinatized

7 (s - {distinguished divisors}) . ne
¢ key point of this construction is that, with suitable hypotheses, the
al linear combination of schemes over A" obtained by triangulating
above is “homotopic” to the linear combination obtained by pulling
Aarst along the 7z, with appropriate signs, and then triangulating the
nd pulling back again over simplices in the triagulations. We will
at there exists T — § in % such that the strict transform of
5 along the map
H A, =S

vel
v vertex

aces properly in a suitable sense. The combination of the homo-
Tesult and the mechanism of having the strict transform meet faces
{13' leads to the proof of the moving lemma. We apologize for the
Sity of mixing cubical and simplicial constructions. The point is that

One can show (using a theorem of Spivakovsky [7]) that for a suitabl
arrow 7 in ., the strict transform /' meets faces properly. |
Unfortunately, this property of the strict ransform meeting facens 91'0_{
erly is not quite what we want. To see the point, let S=8=4" Wli
distinguished divisors obtained by setting coordinates equal to 0 oF
This “cube” can be triangulated by choosing a general point p € 5 ap

mapping in
A" = Spec(klty, -+, L}/ g+ -+ 1, — 1))

in various ways suggested by Figure 1. .

We can pullback our X over the various n-simplices to obtain 2 f0m:1
linear combination of schemes X, over A" . Suppose now we blow uf
face of S (cf. Figure 2).
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nsider first an intersection
@yn(nd +- -+ 1,6,)

and the &, are distinct distinguished divisors. Blow & N 4, and
5 and 6 for the exceptional divisor and the. two stnct irans-

in the cubical theory one can achieve conveniéntly the necessary cance!
tion of interior faces as in Figure 3, while. construction of the homo
is easier. in the simplicial theory.
(1.2) Properties of By . .
Lemma (1.2.1}:  Let S (D, -+, D} and V., {8,, -+, 8} be:sim
quasi-projective varieties with collect;ons of smooth dmsors wrth al
sections transverse. Let . : V. — S ‘be a morphism (not necessarily it
and suppose 7" (D)) = 3 ny;8;, b<isn. Let o2 S’ = 8 be the bl
of D,ND,(---nD,. Then there exists an object T: ViV in %,

a diagram
vt

ok

§ — 8
The map n' has the property that, writing 5 for the: dzstmgmshe
divisors-on V' and. D for the dlsrmgmsked dfwsors on S, we'ha

D)_ZHJID i

Proof. Given 'c v! _s V', the universal mapping property
implies the map = exists if and only if the puliiback

(néyN{n,d, +---+n,9,).
. 0 a13d_’ Sndig=0 'be- local defining equations. Passing to
and using the first case, we can assume [ = fh, g=2g'h with

(fﬂ , g) — k- (fm.h-n—-I.., g’) . (k-n'—_l , gr)

A= (10,41 B) O By, 4 D)

mom
1. o : n on £+ m we
(o1) '[1dcal defining D, N ++-ND;) may Suppose aftcr blowmg up various inter-

is invertible. The same principle implies that o: 8 =S is do
a composition of blowups of intersections of two distingunishe
Indeed, if [ : 7 .S is the blowup of D__ ,ND, and E

exceptional divisor,
S Dyn-nDy = £ @Y n-n ST D, )N

We may thus argue by induction on r. It will therefore s fi
(1.2.1) in the case r = 2.

" ‘We must show then that by iterated blowups of 1ntersect1
guished divisors, starting from V', we can make the pullb;

(Z ”515;*) n (Z "u‘s})

locally principal. After-each blowup step, we can. rem g
mon Cartier divisor from the two sums and work wn
sectzon (cf Fulton 4 Chapter 9]) I

A(xiuf, vf)

('1) The residual intersection of 4 is then given locally"
') and we are back to the previous case. This proves

: 22)' szen i =S in By for 1 < i < ¥, there exists
B and g2 W — U, with. fog{mh Jor 1 <i<r.
re_duces to the case r = 2, where it follows from noting
_S. in {1: 21) is in '_@ thensoxs ret. -Q.E.D.

'.3')'_.- The category .@ isa full subcategory of the category
r.:S, $0 it 1s not: necessanly the case that a morphism in &
of blowups One'way to think about the situation is to note
cally over .S, ob_]ects in & ‘can be given the structure
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P_Tgof These assertions are straightforward. Q.E.D.
definition, an edge in S, is a one-dimensional face.
mma (1.3.2). Every edge in S, coniains exactly two vertices.
pof. Thisisclearfor N=0. For N > 1,let p: 5, — 5, _, andlet
' be an edge. If p(¢) has dimension 1, then p|¢ is an isomorphism,
is an edge of S, , and the vertices of ¢ and p(£) coincide under
ff p(£) is a point, it is a veriex of S, _,. The fibre 2 plt) is
a projective space which is an intersection of distinguished divisors.
intersections of other distinguished divisors with p~' p(£) form the
+dinate hyperplanes of the projective space. One is thus reduced to the
fion where the ambient space is projective space, and the distinguished
sors are coordinate hyperplanes, where it is clear. Q.E.D.
efinition (1.3.3). Let v, w be the two vertices on an edge £, and let
.1, (resp. uy,- -, u,) be the distinguished coordinate system at
esp. at w ). The coordinate for ¢ at v is the unique ¢, which does
#,(0,--,0) =0 ' nish on £. Suppose ¢, (resp. uq} is the coordinatg for 2 at v
at w). We define g = g{v, w) in the symmetric group %, such
{p) = g and, for { # p, the distinguished divisors defined locally

of toric variety in such a way that faces are orbits and MOrphigmy
compatible with the toric structure. As an application, we have
Lemma (1.2.4). Let f: T — T, be a morphism in B, Th e
carries vertices 1o vertices.
Proof. The problem is formal local over S, s0 we may assume th
are toric and f is compatible with the action. Vertices are then the |
points of the torus action, so the assertion is clear. Q.E.D. ;
(1.3) Little cubes, We take § = Sy = Spec(k[x% 2ty Xpl) with
guished.divisors defined by x; = 0, 1. We consider a tower of bloy
of faces

Sy == 8 5 .
Let v € Sy bea veriex. By induction on N }:ve define an open lmmars
of some Zariski open neighborhoodof 0 € A” = Spec(k[t,, -+, 1,])"
an open neighborhood of v € Sy, o
p, A"DU =Sy
so that the distinguished divisors through v pull back to the coordi
hyperplanes ¢, = 0. When N = 0 define the pullback on functions by

. 1, if x,(v) =03 _- ;=0 and u,, =0 coincide.
X)) = { 11, ifx(v)=1L o ar “little cubes” z, 1 A, — S are not yet really cubes. The sides
This defines g, for N =0. Supposenow N >1 andlet U be: the'-i_in 0 are dejﬁned, but. we want to choose appropriate scale factors c},, ;
of vin Sy_ . Let@,, -, 7, be the coordinates at T defined inductr other sides are given by ¢, = ¢, ;. Choose once and for all a point

via gy. Over some neighborhood of 7, .?‘N is deﬁned_ from Sﬂ;_l-_
blowing up {f, =01/ €I} for some (poss1bl3.r empty} I C {1‘, .
If [ =@, we take ¢, = 1,. Otherwise there will be a umque els
that v does not lie on the strict transform in Sy of {f; = 0} . Define

e={e, L) €S~ U{distinguished divisors}.

hat 7' : § — [J{distinguished divisors} — A is defined. Let

"

{is ifigl, CQ={Cy 1o 1 Gy ) €A,
t =2 7 /T, ifjelandj#i; . .
i J0r T image of ¢.

i, if j=1.

ma (1.3.4). Let the situation and notation be as in (1.3.3). Define
sD,={t,=c, }CA} (resp. D, ={u,=c¢, }CA}). Note
sp. D) has coordinates 1,, a # p (resp. ug, B# q). We have
. morphic to D, over S, the isomorphism carrying t, to u g(v wia) -
100f.  To see that the two divisors are isomorphic over S, we argue by
fon op N. When N =0 the assertion is immediate. Suppose now
2 1. Assume first that the image of theedge £ in S, _|, ZC S,
i_dge with vertices 7 and W. We have A] — AZ (resp. A] — Ag).
}Vlsors D, and D, are the inverse images of the corresponding
D; and Dz on A; and AZ. By induction, Dy = Dy, the

The coordinate system at a vertex v defined in this way will be ¢4
the distinguished coordinate system at v . :
Lemma (1.3.1). (i) The composition

n,: A8y = §

v

is everywhere regular.
(i) The assignment

T 1 A

weT
T Veriex

is a functor on %y
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isomorphism carrying {with obvious notation) coordinates I, a
into coordinates o g B # g, up to a permutation of indices, The o
in these coordinates is where the image of the edge ¢ on As (resp,
A" ) meets Dy (resp. Dy ). Further, D and D, are coordmate patc"
on the blowup of Dy and D along the mtersectlon of the center foz-
blowups on the A’s w1th thesc divisors. The coordinate patches Coineids
so D, =D asclaimed, ¥

It rernams to consider the case when the image of the edge 'g'_:'
S, is asingle vertex z. Let y,, .-+, p_ be the coordinates at z_
{y, = 0li € I} define the center of the blowup Sy = Sy_r - Then for so,
P, g €I, the coordinates at ¢ (resp. w ) are y, /yp, iel, togetherm:‘
Yy and Yis J ¢ I (resp. y;/an ! € I', together with y, and Yis J 5{
We have

o betheloci t, =0, ¢, ;. Assume Z meels faces properly. Then

2 exists a praper closed subset WSS suchthatif ¢ ¢ W then n 'z
s faces properly over A, . In particular, if the ground field k is
o, we can choose such a ¢ (depending on Z).

gf. We will only prove (i). The argument for (ii} is the same,
er with some standard general position arguwments to handle the
[ ;= €, ;- Let g: f!Z — T. For o ¢ T a face of codi-

B,!

on d, we have ¢ '(o) closed in Z X 0, 50 it suffices to show
Z xg0) < dimZ —d. For r 20 let S C § be the locally closed
were the fibres of p have dimension > dlm(Z) — 1 +r. Assume in-
ely that q*l{a') has dimension < dim(Z) — e for any face o’ Co
¢ = codimo’ . Let 8¢ C ¢ be the union of all proper subfaces of
nce flo — 8o has equidimensional fibres, it will suffice 1o show that
NS, has codim > r in f(o) for every r. By hypothesis, Z meets
properly, so 7N S, has codim > r for any face v C §. When
(so ¢ = point), f(o} is a face, so f(g)N S, has codim > r. By
fion, we may assume f(80)nS, has codim > r. To show the in-

D,y ly,=c, ,/c, , (tesp. D, :_vp/yq =€, o€ o)
The identification in question arises from the natural isomorphism
k[y;/.}’p ] y 3 yj]/(yq/yp _Cz 'q/("z 'p) = k{y;/}’q * yq L] yj}/(yp/yq _'Cz‘ﬂ[c;
which sends Yo (Cz'p/cz,q)yq . Q.ED.

ma.ge a dense subset of a face v in S and has equidimensional fibres.
tn.S, has the correct dimension, the assertion follows. Q.E.D.
eorem (2.1.2), Let p : Z — § be quasi-projective. Assume the
d field k is infinite, and

2. The basic general position theorem

(2.1) Formulation of the theorem. This section, which contains the he:
of the proof of the moving lemma, is, strictly speaking, a bit out of pla
We should first push the ideas in §! further in order to construct a’
motopy. However, this involves some rather fussy business with signs
Psychologically, it seems important now to give the reader a ghmpse
the light at the end of the iunnel,

Let § = Spec(k{x,, .-, x,]) with distinguished divisors x; = 0
asusual. let 1T — § and P Z — S be morphisms of scltlt’:ﬁlf?5
Rccall the strict transform of 2, =n Z is the closure in £ xg i T

(S U{dmtmgulshed divisors}) . Recall further that Z is said t0 m
faces properly if p~ (cr) has codimension > r for every Ca:}r:luritfﬂ'-‘?’10
face o on §. '

Lemma (2.1.1). (i) Let f: T — § beamorphismin &s. If P+ Z=
meets faces proper!y, so does f' zZ-T.

(i1) Let = : HA — S be defined as in (1.3.1), where v runs ffim“gh
vertices of T . For ¢ a k-point of § not lving on any a’:sungmshé‘d d‘
let ¢, be the unique point of A, lving over ¢. Define distinguishe

p(Z,) ¢\ J{distinguished divisors}

ery irreducible component Z, C Z. Then there exists T — § a
osition of blowups of faces such that, writing = . HA: — S for the
ponding map of local cubes and choosing ¢ € S general, we have that
meets faces properly over 1A .

oaf. One reduces easily to the case p projective and Z irreducible.
vcus first on the case P:Z — § is a Cartier divisor. Consider the

7 = lim {vertices € V'}.
Jm
¥ €Ob{F,)

pr, 1 77 — {vertices of V'}.

Main result in [7] has as an easy consequence the
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Lemma (2.1.2.1). Given v € 2" zhere exists c:V —§ a CoOmpog
of blowups of faces such that pr, (v) ¢ 'z,

Progf of lemma. The question is local about a given vertex in S, s
may assume Z : f{x;,---,x,) = 0 with vertex (0, -.- . Cons
in R>o the set A of points (r,, .-, r ) such that the moncmaal' '

stently chooses i > r+ 1 we are essentially playing the Hironaka
‘on k. (The g; change after every play, but they continue to have
'me constant terms } Eventually, then, by Spivakovsky’s theorem, £
es a nonzero lnear term. At this point the linear term in /* involves
st 7+ 1 variables, so we conclude by induction. Q.E.D.

eccurs in f with nonzero coefﬁment Let A CRY, be the convex by, Returning to the proof of (2.1.2), we continue to assume that Z is a
,EM(r-l- R>0) Asubset I'C {1, -, n} is chosen and a point j ¢ S d1v1sor on S. The lemma implies pr, (v} ¢ g 'Z for any g :
given. The transformation v =S in & . Foreach v € 77, choose V(v) in % so the strict
v { ris if j#i: form of Z on V(p) does not contain pry,.(v). Let

/ -1+ Ejel‘ Fis ifi=j U ={ne?| pFV(D)(D) = DTV(U}(#)}-

number, say U , -, U, , of these open sets cover the compact
. By (1.2.2) we can find W in %y dominating V{(v,),- -, V(v,)}.

ﬂ e hes in one of the U whlch means pr;.{(u) hes Over pr, @ }(D )

& strict transform of [ on W does not vanish at pry- (1) . Since i
arbitrary, it follows that the strict transform of / on W does not
h at any vertex of W . Taking S, = W and noting that since Z isa
"tj:r divisor and the point ¢ € 5 is general, #'Z meets faces properly
Al if and only if it does not contain any vertex (0,---,0) € A},
gve proved {2.1.2) in this case.

e-next consider the case p:Z — S a closed immersion of codimen-
d>2. Wetake Z Cc W C § with ¥ of codimension & — 1. By in-
on on 4 , we may assume 7' W meets faces properly on || A: . Since
cn W, we can assume n'Z meets faces in codimension >d-—1.
particular, 7'Z does not contain any vertices.

t the above 7 correspond to §° — §. We want to localize our

is performed on A, yielding a new convex set A’. This is viewed as o
“play” in a two-person game (Hironaka's game}, with one player choosis

the I' and the other choosing the 7. Spivakovsky shows [7, p. 420, thy
orem] there exists a strategy for the I' player to “win” in the sense the
eventually, the convex set will contain a point with 2, <.

Geometrically, I' corresponds to an ideal .#(I) = {x lj €T}, and
a vertex in the blowup. At that vertex, the coordinates are x. /x; for f
and x, for p ¢ I'. In these coordinates the convex set correspondi"
10 J‘"(x1 s, X,)/x, is A'. It may happen that the transform of
divisible by x’g for £ > 1. Inthis case, the I" player would choose =
{which has lhe effect of dividing f by x;) repeatedly until this was
longer the case. The I' strategy correSponds to the choice of ¢: ¥
and the 7 strategy is the v € 77

Note that a point with ¥ r, < 1 means that the divisor has multipli
at most 1 at the vertex. Reordenng the variables, we can write for som

l<r<n lem around the vertices of S'. Suppose for each vertex v € S
ave an iterated sequence of blo s of intersections of distinguished

SO ) =x Byt A G HA(x s X) ors T, - s c;uclcll that, for an;ﬂ\l«'Zrtex w on T, lying overgv the

Here the g; are polynomials in x,, --- , x, with nonzero constant tef  transform of 7'Z on A} meets faces properly. Using (1.2.2) we
and all terms in / have degree > 2. If h =0 (eg. if r = n)¥ choose 7 — §' in %, dominating all the T, . For x € T a vertex,
?ac:;:tﬁglig;a;ngxéé&;; ' ;ﬁg 212}&? that th)e 3;;:";: ;r%mfwo:;,-::::d' X . €S8 and w € T, lie under X. Wehave A, — A, = A,. By
Mption, the strict transform of =# 'Z on A, meets faces properly, so

ki

.1.1), the strict transform of 7'Z on A, does also. We conclude in
e that 9'Z meets faces properly, where
g H A, — 5

xeT

descending induction on r. We play Hironaka's game on #', modify
our technique so every time Spivakovsky’s strategy suggests blowing
along an ideal generated by {x,|y ¢ F} we actually blow f along’
ideal generated by {x Iy €TU {t,---,r}}. Note that if the 5"700
player chooses i € {1, --- , r} weare done since the resulting pﬁlynom

{strict transform of f ) dOCS not vanish at the vertex. If the secﬂﬂd p $:2 consequence of this discussion, we may replace Z ¢ § with Z C
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A" where A" = Spec(k[t,, --- , ¢,]) with distinguished divisorg t;
We may assume Z does not contain the origin, and our problem ig to
¥V — A" an iterated blowup of intersections of distinguished divisgpe
that, writing

(2.1.2.2) m: [[A - A

rel

jm that n 'Z meets faces properly as well. The image of n 'Z in
" ig n( f(Z)), which meets faces properly by (2.1.1),s0if s C ¥V
;ad face, there must be an irreducible component T C #'(f™ (7))
‘that the fibre dimension of T over o is > 1 and dim(7T) > dim(o)+
Assume for a moment that

3.3) A (a?’ Xg HA") =Y.

e

we have that 7'Z meets faces properly. To this end, we consider 3 chagra

Q.l,f - Q‘d’ e R —bQO A, A" it Tﬂ(% X V)C}‘E?(f-lc‘) 80
pl Pl lpb dim (7' (f™ o)) 2 dimg(T) - 1 > dim(g) +d — 1 ~ n,
Mo T Ay T Ty 3 '
radicti i ‘ ts f; 1y.
where g : Q, — A" is the blowup of the origin on A”, P, = P""! and adicting the assumption that = (¥) meets faces properly

remains to verify (2.1.2.3). The righi-hand side is included in the left,
'{Sufﬁces to show the part of the left side over any A" is F-irreducible.
¢lear that the left-hand side is a divisor on #'Z which coincides with
‘pver a dense open set of the given A" . Let R be another component
s divisor. Let &, .-+, J, be the distinguished divisors on A", We

R (7 (Us)

“which it follows that R is actually defined over k. But R(k) —
)} = &, so R = &, This completes the proof of Theorem (2.1.2).
D.

vertical arrow is induced by projection from the origin on A" As usuéi
the tower P — -+ — F, consists of iterated blowups of intersectig
of dlstmgmshed divisors, where the coordinate hyperplanes are the disti
guished divisors on Fy. Q= Px s, ¢y, and the tower Q, — - — A_”_

also such an iterated blowup. Let W C F, be the closure of b(a’l(z'.}
W has codimension d— [, so by induction, we may assume for any vert
v € P, the strict transform of W in Aﬁ*] meets faces properly. Sin
0 ¢ Z, the same will hold for the strict iransform of Z in A;, for a
vertex w € Q,,. Taking V' = @,,, we get the desired diagram (2 1.2 2}

Finally we consider p: Z — S arbitrary projective. Applying what
have already proved to the closed subscheme f{Z) C S, we may assume
that Z is irreducible and f(Z) C S meets faces properly. We procged:
by induction on dim{Z). If 4 < 1, it is straightforward to check that:
meets faces properly if and only if f(Z) does, so we may assume d > 2.

Let Z ¢ P¥ x § with N >0, and fix an embedding y : § < bl
(space of linear forms on P" ). Let F = k(GLMl) be the function field of
the linear group, and let g € GLN+I be the generic pomnt. Let x = goy
S — (PMYY, and let # ¢ SE“F x § be the corresponding divisor. Noi¢
#(k) =@ . Indeed, if # € #(k),let H = k(pr,(h)) be the corresponding
hyperplane. We have pr (k) € H(k). On the other hand, K(ng(h))
g o w(pr,(h)} is k-generic, so H(k) =2 . .

Let Y =Z0# andlet p: Y — §. Y is defined over F and
dimF(Y) = d — 1. By induction, there exists ¢: V — S in % such 1h
7'Y meets faces properly where

H A"——-a-S

el
7 overiex

_ 3. The homotopy
'_.l) Fussy signs. We fix a lower
Sy—- =8 =35

-8 = A" withdistinguished divisors defined by ¢, =0, [, and S
iven by blowing up a face for all /. We have the associated map of

cubes
H Az — 5

vESy
v vertex

ﬁmtmn (3.1.1). For w € § a vertex we associate a sign ¢(w) =
™ where m is the number of coordinates taking the value 1 at w.

avertex v € Sy, €(v) = €(w) where w is the image of v in S.

1 £ be an edge in S, with vertices v and w,andlet g = g(v, w) e
cf. (1.3.2) and (1.3.3)).

tma (3.1.2). €{v) = —¢(w)signature(g) .
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Proof. Inductionon N. When N =0, g =1id and €{v} = —¢(y
Assume N > 1 and that the lemma holds on Sy_, . Let p: §, — Sy
be the given map, which we take to be the blowup thh center Z ¢ Sy
We consider four cases:

Case 0. p(v)# p{w); neither ie on 2. Then g(v, w):g(p(v),p(w)_)__
and we are done by induction.

Case 1. p(v) # p(w}; p(v) € Z and p(w) ¢ Z. The distinguisheg’
divisors containing / on S, are the strict transforms of those containing.
p(¢) on S,_,. Again, therefore, g(v, w) = g(p(v), p(w)) and we cap.
use induction.

Case 2. p(v) # p(w); p(v) and p(w) € Z . Exactly one of the dis.
tinguished divisors D defining Z on §,,_, will have strict transform [y

subdivision {AZ)

Fioure 4

{3.2} Subdivision. The purpose of this section is o develop a general

not containing £. Let #,,-.- , 7, (tesp. &, --- , #,) be the distinguished hnique of subdivision, applicable to simplices and to products of sim-
coordinates at p(v) (resp. p('w) ) and assume D deﬁned locally by 7, = 5. The pictures are simple enough (cf. Figures 4 and 5) but one must
(resp. @,y =0). Let J C{l,---,} besuch that Z: £=0, ] e I careful. In algebraic geometry, unlike in topology, faces of simplices

tend infinitely. The fact that the large triangle in Figure 4 is the sum of
¢ six interior triangles has to be properly understood.
We fix N a large integer and

The distinguished coordinates at v (resp. at w ) will then be
=0, r¢J; ,=0/1,ifjeJ—{i}; t,=]

(resp.u, =, , r¢ g(J); u,=u/u ‘ifseg(J*{f}); U, =1 -).-"
¢ g( &5 .3() Lo c=1(Cy, ,Cp) E AN = Spec (k[!o, ZN]/ (Zr - 1))
Once again we will have g(v, w) = g(p(v), p(w)), the sirict transform ¢
D' of D being replaced as a defining divisor for ¢ by the excepnﬂnal- cassume ¢, =3, ¢, #0 forany 7 C {0, --, N}. Let

divisor E defined locally by ¢, = 0 (resp. by Upy =0).
Case 3. pvy=pw)=x€ Z. Let x, .-, x, be the distmgmshed
coordinates at x. Let Z :xj-:O, jed. Forsome peJ (resp. geJ)

the coordinates at v (resp. w) are
t=x,r¢J, ;=x/x, J€ J—{p}; 1, =2x,

(resp.u, =x,, r¢J; u;=x,/x,, jeJ—{a}; u, = X,)-
It follows that g(v, w) is the transposition g(p) =¢q, glg)=p, &} =1

for i s p, g. We have signature(g) = —1 and e(v) =c(w). Q.ED

a.rj~0, jeJ

2 simplex in AY  Let {0, .-+, N} =T1J, and define
cla)=0(-,cfe,, - -} €T,

iere the ﬁh coordinate 1s O if j ¢ I. Note c{{i}) = c(i) is the ith
tex of AN

By a genemi p-simplex in A", we mean an affine linear map A —
Such a map 1s determined by the choice of p 4+ 1 points a(0), --- ,
)& A", and is denoted {a(0}, --- , a{p)). For an ordinary p—31mplex,

. = rl
Lem ma (3.1.3). Let g € ‘9;"’ Let refl, ,n} and let s &l )-' would require the a(7) to be vertices of A" . We also use the notation
Let § €5, _ | be the composition
{1, n=1}= {1, 7, , n) (@(0), -, alp)} = (a(0), -+ , alp - ).a(p).
] 3 h - . . .
1, Sy (L, e n -1}, oundary of a p-simplex is the formal linear sum

3{al0y, -, alp)y = 3 (~DHa®), -, ald). - , alp)).

€ define a function

where the iwo outside arrows are order preserving, and the map in the middk-
is induced by g. Then signature(g) = (— 1)’ signature(g).

Proof. Straightforward. Q.E.D.

Lemma (3.1.4). The signature of the cyclic permutation g(p) =
gliy=i-1forp+1<i<n, gUy=jfor j<p, is (=1)"".

Progf. Straightforward. Q.E.D.

{formal linear sums of ordinary p-simplices in AN} —

: {formal linear sums of general (p + 1)-simplices in &N}
0 < p < N. (We frequently omit the subscript ¢ when no confusion
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is likely.) For p =0 set voof. The point is that Hg is 2 formal linear combination of
flices with support in (i.e. having image contained in) ¢. Thus
c(0), «+- , c{n)) is supported on @{c(0), --- , c(n)). QED

efinition (3.2.3). With notation as above, the subdivision (with re-

ot to the point ¢) of A" is defined by

subdivisionr(A"} = ngm(cro, - o elag), -, e, ))

Wc now consider the question of subdividing a product of simplices.
ume given points M g AP (sufficiently general so the above subdivi-
{ constructions are possible). Given

H.(c()) =0.

For p > 1, define inductively
Ho = (o — (-1)"™ ) Hag)clo).
Proposition (3.2.1). For all n > 0 we have the homotopy formulgy
(6H, - HOo)e(0), -, cln))
= (=1 (), -+, () + 3 sanlay. - . 0,)elag), o+, efo

Here the o, run through all collections

BCayG G, =0, -, cla,). UZHG‘(I)CAP'X“-XAP’
By deﬁnfrz'on sgnloy, -+~ , 0,) is the signature of the perimutation g of oduct of simplices, we define
{0, .-, n} with g(i) = index of vertex ino, —0,_, .

Proof Induction on n. When n =0, both sides of the equation are o) = Hcm(g(n) €A x AP
Q. For n> 1 we have
(@H - H8){c(D), -~ , c(n))
= (8{c(0), - , () + (=1)"TBHB((0), -, e(m))ec(O, -+~ , 1)
+ (=)™ e0), el + (=1 T HB(), -, e(m)))
- Ho{c(0), -~ , cnh)
= (=1)""e(0), -+ , c(n))
+ (6(6(0)? T C(H))
=1 AH - HOB(c(0), -, c(n)))e0, - o 1)
= (=1)""{e(0), -+, c(n))
(DT Y Y sen(g, 60 5 0,0
e(o; o)y - s elog he(0s s )
= (_1)ﬂ+l(c(0) » T c(n)) +ZSgﬂ(O’0, | 0'")(6'(0'0) a T C(Un)).':

The double sum above runs over 0 </ < n and chains of simplices

re is a natural notion of chains of products of simplices (n=3p,)
@gceg---gan=&p‘ x % AP

 maps

{c(og), -+, clo,))y 1 A = A% x-ox AT

g the linear structure of the product. In the same way, given ¢ : A” —
Vi and E € [1A", we define

GE: A" T a%

= boundary, 8([1A™), is a formal linear sum of maps of products
simplices into [T1A", defined via the usual rules for boundaries of
'__ucts. Finally, we define inductively

c c — ED _ 1§£ion “8gp © -+ 7 refers to composition with the map 3(] APy
DG0,0%  §0 =00, (D)oo, c(m)s QED 4% | In words, the subdivision of the product is obtained by coning the
Corollary (3.2.2). h:rl:mon of the boundary with vertex ¢ a general point on the product.
n : sition {3.2.5). (i) For r = 1 Definition (3.2.4) of subdivision co-

(_1) +I(C(0)’___ ,C(n))_}.zSgn(g{), see gﬂ}(c(gﬂ)’ ,C(G'”)) ; po ( ) ( ) ﬁ ( ) f

.'_des with the definition given in (3.2.3).
=8H {c(0), - ,c{n))  mod simplices supported ) ) Viewing 8 and subdivision as formal sums of maps, we have an
on 8(c(0), -+ » A

ity of formal sums of maps A" = [[ A7
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N d-subdivisibn;,j-m A) = subdivisiOnna“o" e ©,0) g .
Proof. For (i) note that o, = A" so ¢(g,) =c and N :
S senioy, -, o Melog), 5 clo,) o
= Z Sgn{.o-g >, Un)(c(ﬁ'a) LR C.(O'ﬂ___i.))LC o N . |
—1 CH e o & "P"?. I {
It is clear that 80 © subdmsmn(BA ) A" — A" 5 a linear N
nation of simplices {c(g,); -+~ , €(0;, 1)) with-coefficients 1. Thustie. o . . ¢ Y
simplices apearing in the expansions- (3.2.3) and (3.2. 4) are the sam FioURE: 5 .

-must. check that they appear with the same sign. The “external”

(C(G{J) y " -!_C(_b-n')) is (0(60) 3T C(U.'—l)‘} . If C(I) € 'a__q . Gﬂ . subdivision (A_.IIXAI)&

vertex not in o, _, , then this face appeare *-. di(A”_'l) c A" | e N | —
that (c(ay), -+ , ¢{(g,)} appears with sign (—1)"" sgn(oy , - SO e
(3:2.4). The desired asseftion sgn{ay, --- ,7,) = (~1)"" sgn(a, R
is Lemma (3.1.3). _ T }

For (ji), note that by définition L : N

subdi_visionn A = (=16 » o subdivision, pay)c , / | ~ .
The identity _ ) K L ad
(pyod =(pod)c=(~1)g FIGURE 6

for g: A" ] A% implies by induction: N ]_ ]
subdivisiong 5 08 s :f lf.; ¢ {'g_ () g n =Dt
o . _ s otherwise,

= (=1)" (8 osubdivision,p ny) 0 O g1 )+ Byia © s_ub_fh '
= {0 © ..a'n' A © subdivisiony am &)_)Lc +:8pp © subidivisio ._n . i

P, 0 = A,
Pallpsee s 1) = La(A),
¥ = sen(g)-gog,.
o

L

=B, © sub__divisit)q ATIAY- Q.E.D.

(3.3) Subdivision for cubes. When r = n and p; =-
subdivision becomes a linear sum of maps AP I1 Al _':'O hi¢
hand, for each vertex v E HAl we have constructed 1
Al — J]A'. We will give another construction for.|

of HAI by “subdividing” the A" Let a = (g, , &
]"Iat..%.(].. Define an action of 5"; on A” by

re for n =12 is'shown in Figure 5.
e, dY e H& with ¢' # 0,1. For v a vertex, let
_- Recall ‘we have defined in {3.1.1) a sigi €(v),
1) We have
subdivisiongi = D7 €(v)m, o v
: i vertex

_1ghtforward except for’ the signs, and we leave it for the
ture is. shown-in Figure 6.

glxy ey %,) =@ @1 ) Xp=10ys 5 g1
Define ' o
a(A } = (0’ ety 0.1 .a_n_jq..l_\s.." '_' :

so a(A%) = (0, -+, 0) and a(.A'.l.)-_.:_ (.0__’__ .
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' (3.4) Subdivision and blowing up. Let Sy = =8 -8 be x =4
lterated tower of blowups of intersections of distinguished divisorg 2
S§=TIA' and distinguished divisors on S defined by setting coordinw]' (i) The image of go @gﬂ o8, is defined by
=0, 1: Note that the sum in (3.3.1) is over the vertices in S, but&til
expression makes perfect sense summed over vertices in §. for any ;
Our objective in this section is to show these expressions are fn $OTne senp

homotopic independent of p. (Cf. (3.4.2) for a precise statement.)

g Yn+1) g '+ 1)

xg"‘(l) = 0.

(iv) For j£0,n+1,let kz(g_](n+l—j) g_l(n+2—j))og. {Here
:) is the transposition of 'k and £.) Then gogo 0; = hogp 08, {(as

Let 7 < {1,---, n} be a subset. Define ps, not simply as images). If p # g, h is a permutation, then gogod,
(3.4.1) o ) _ w0t a face of poy.
O, A" xA — A7, 9;(-7(1,"',-’C,,,f)=(m1(X,f)w--,mn{x,t)) ¥) l}‘;J']oaj:Oforj#G,n-i-l.

(i), (i), and {iii} are clear. For example, the formula in (3.3)
es g(&(Ai))g_l(l) = 0 for { < n so the span of these points is the
_' erplane defined by Xgerpy = 0.

To prove {iv), we remark that g(a(Af)) = p{a(A")) forall i # j means
D, S_i(?H- 1-1}= {p_l(l). ,p_l(n+ I —#)} (unordered
g) for { # j. This implies g_l(f} =p M&) for ¢ < m+1—j and
>n—j+2. Also

where m,(x, t) = x;t if i el and m; = x, otherwise. We will use g

to pull back cycles. Note that the argument at the end of the proof {é‘

(2.1.1) applies in this case to show that if Z isa cycle on A" meetigs.

faces properly, then ©7(Z) on A" x A' meets faces properly also.
Let & =(a, 1) € A" x A' and define

I
lI_,n+ ___\Pg-i—l :A!H-l _,Am-l =An XAi

(formal sum of maps). As usual we write 8, : A" — A" for the inclusion’

of the ith face. Given f: A"~ §, we write 8(/) = Y(~1)'f08,. The’
basic homotopy statement we need is
Proposition (3.4.2).

g 1), g - j = 1=, p =i+ D))

is implies {iv).
Finally, (v) follows from (iv) since

signature(g) = — signature(#). Q.E.D.

al(-pm! D ew)m, 00, o Lemma (3.42.2). Ler B, : A" = {x, = 4,} ¢ A™" be the inclusion.

vES,_| €n
; +1 1+7
vertex ) 3(8, oW )= (-1 00 f oW +F
= Z e(vim, o ¥, + Z e(vin, oV, + & : f
oty s ere a(i) = (@), &, -, 4,,) and F isasum of maps & — A”

th image in the union of divisors {x, = 0}.

Proof Up to sign, this follows from (3.4.2.1). To get the signs, one
5 (3.1.3). QE.D.

Recall we have a tower Sy—---— 8. Let p:5, — §,_, be the last
P. Let Z < Sy _; be the center of the blowup p. Let v € Z C 5y
a vertex, and let 7, : Aj — S be the corresponding map. Let 7 C
»++-, n} be the set of variables defining Z near v, andlet p ¢ T be
_'.en. Let x,,---, X, be the coordinates at v, and let £ be the edge
Tough v defined by xj=0 for j#£p. Note { CZ. Let w e be
¢ other vertex on ¢ {1.3.2), and write Yoo o ¥V, for the coordinates at
- Let J = {j | y; vanishes on Z}, and let y, be the y-coordinate not

where I Is the set of coordinates in the v-coordinate system defining the

faie in S, _, wh'ich is blown up in S, and & is a formal sum of maps

&7 = § whose image lands in the union of the distinguished divisors on
5.

Proof. A sequence of lemmas: . .

i n+l -

Lemma (3.4.2.1). (i) For g € & |, the codimension-1 faces of §o¢s

are

n+l

gop;t 08, = span(g(@(A”), - , g(@(A)), - , glalA""))-

(i) The image of g o p™*'

a

o dy is defined by
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vanishingon £ at w. Let ¢ € S be a point not lying on any distinguished
divisor, and let ¢, and ¢, be the pre-images in A”.
Lemma (3.4.2.3). The components of

d{e()m, 00, oW 4 (c(win, 06, 0 ¥)
supported on m,({x, =¢, 1) = 7, ({y, = €y 4 1) cancel.
Proof. By (3.4.2.2) this amounts to the assertion that
(1) e(u)m, 08,08, 0¥, = (~1)"e(w)n, 08,08 oW

as formal sums of maps A" — S Let g = g(v, w)€.% ,andlet 3¢
be the permutation ’

{15"' 3”}_>{13"' :ﬁv"' sn+l}_){15“' -séa"' sn+1}

—r{I,---,n}

where the two outside maps are order preserving and the inner map is
given by g extended by n+ 1+ n + 1, Using (3.1.3) we can write the
desired equality as

R’f} = 8[ o ﬁp e \P:u - Slgnature(g) @ ?r‘u,' © 8J ° 5q ¢ ‘P:u

Let 7 : A" — A" be the map corresponding 1o the permutation §. The
diagram

Aﬂ _'E’____‘} A:‘I
|4 l ,
An-f—l An+1
8}' lei
n, lnw

S —— §

commutes, and the lemma follows from
7o ¥" = signature(g) o ¥",

which in turn is immediate from the definition of ¥" .
Next, we consider lerms

Q.E.D.

|

THE MOVING LLEMMA FOR HIGHER CHGW GROUPS 561

(_1)n+1+rnﬂ 08‘, o B, o ‘P‘n

from the right-hand side of (3.4.2.2) with r € . {The terms with r ¢ I
will cancel by {3.4.2.3).) Note that r € / corresponds in a natural way to
€Sy vertices tying over v . The composition

An b B, A

£

AH+1
coincides with the map (1.3.1){(i1) p, W Aﬁ N Ag up 1o a permutation of
coordinates of the form

Z LI,

r—1'%n r ’zn—l)'

(ZE L,
By (3.1.4), this gives

('1)ﬂ+l+rnv o 81 o ﬁ,. o‘{’n — (—I)HHRF o py‘v o'}’n _ (_I)m—]nv o l},ﬂ'

D Z) ez 2

Finally, we note that 8,0 8., = identity : A" — A",

Putting all this together, we find we have proved (3.4.2). Q.E.D.

4. Proof of the moving lemma

(4.1} Reductions. We work in the category of guasiprojective varicties
over a field k. Let U be an open subvariety of a variety X . Let & be
the cokernel

Z(X,)->Z WU, )—-% -0
The moving lemma asserts that %, is acyclic.

Lemma (4.1.3). [n the proof of the moving lemma, we may assume that
X is projective.

Proof  Consider the commutative diagram, with X = projective clo-
sure of X (to simplify we write Z(X) rather than Z'(X, )):

0 ZT(X-UNYFX-X) > ZTO)FX Xy v F(EXYZ(X-UY—=0

g N M

0— FiX U + F(X) — FXVZE(X -UY 0
f\SSUming the moving lemma for projective X, the two left-hand vertical
Inciusions are quasi-isomorphisms of complexes. It follows that the right-
hand vertical inclusion is also a quasi-isomorphism. But, again by the
Projective result, ¥ (X)/Z (X —U) — F(U) is also a quasi-isomorphism.
QED,
_ Lemma (4.1.2). In the proof of the moving lemma, we may assume k
'S an infinite field.

Proof If k is finite, it has an infinite pro-£ extension k, for any £.

or [k, k] = d there are pullback and pushdown maps on cycles with
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¢ same arguments as in the proof of (2.1.1) show that if z isacycle
#/ x A" meeting faces properly, then the pullbacks n,z and y,z also
i faces property. The terms a0, 1, 1,and G oy, above factor
ugh inclusions of faces A"V ¢ A", Thus, if z has the property that
closure &,z on X x A" meets faces properly for 0 </ < n, we get

composition multiplication by . It follows that if H (%, ) =(0) gy
H*(%'j\,,*) is £-torsion. Since ¢ is arbitrary, H*(‘E.’*_*} = (d)- Q.E.D;:"

The following lemma is used to reduce to the case of cubes. B

Lemma (4.1.3). With notation as above, assume X s projective 4,
k is an infinite field. Let z € Z(U, n) be such that 8,(z) lies in y
imageof Z(X,n—1)>Z(U,n—1) for 0<i<n. Let CEH*(?
be the class represented by z. Write § = (/_\.I)" and for ¢ € S(k) )
P A" — 8" be the formal linear combination of maps defined in (33
For ¢ fixed and sufficiently general (i.e., outside a finite union of Cfoséd.i
subvarieties depending on z), there exists a cvele Z on U x S with ¢
Jollowing properties: .

(i) Z meets all faces of § x U properly. For a: (1_'51)"_l — 8 defined
by setting some coordinate = 0, 1, the closure of o"Z on (AJ]““‘ X
meets faces properiy,

el

3.2) B Wiz = (-1 (z+ 1 2)
' (modulo cycles whose closure over X mests faces properly).

J3.3)

(i1} The cycle U N U N - U N
vES &, b,

vertex

is defined in Z' (U, n). The image of this cycle in & is closed and repre:

sents the same class in H (%) as (.
Proof. Define

se a,= v, x (id)"™" and b, = n; x (id)"™". Define
3.4) Z=by-bz

U x 5. It follows from the definition of #n, that the maps b, carry

’7,, . &n-—[ % AI - &n,
s to faces; i.e. if F C A" x (A'Y"™" is a face, then

’?n((u{)’ T s up)? (U(}! Ui)) = (HG'UU, Tt I{p‘UU, U{);
w, A" x Ao A" .3.5) boob _,o---ob, (F)ca™ ca”.
Wal(g, oo ¥y)s (Ko, X)) = (gl woo s Xl X+ X,)- m this one sees easily that Z satisfies (i) in (4.1.3).

The following identities are straightforward: For the proof of (4.1.3){ii), we find using (4.1.3.1)-(4.1.3.4)

W, © 0 A =Id=rc0nstant map to point (0, --- , 0, 1): A" — A",
' L)

W, od, 41 =identity: AT A"
1

1.3.5) Y B atypra (@b bz = 22k Z
r

(mod cycles whose closure over X meets faces properly).
W, 00, qn =8 proy, A" xa S A", 0<ign-t, . , .
' ' We now employ the subdivision maps A" — []A% defined in (3.2)
pullback cycles. Subdivision depends on the choice of a k-point ¢ =
e , ¢y e TTA% . It is easy to check that given a k-variety U and
tycle V on U x [[A” meeting faces properly, there exists a closed
Ugebraic subset B G [[A” such that ¢ ¢ B implies subdivision] (V) is

ned and meets faces properly on U x A" . In particular, when k is
finite as in our case, there exists such a ¢.

Using (3.2.5)(ii) and (4.1.3.5)

"

W08, j=n, 0" x AT A

From these, we deduce the identity in the free abelian group of {not et
essarily linear) maps between products of simnplices: '

(4.1.3.1) 3Qn OW. ¥, c@anx&, = (—1)n(id3ntity —t+, —8;; o Wn-l)'._.-'

1
(Here 0,n, o1 is the sum of maps A Al € A A and AT c AR
with the usual signs.) '



564 3. BLOCH THE MOVING LEMMA FOR HIGHER CHOW GROUPS 565

*

RS b;z)) = subdivision (£2z + Z)

5. Specialization

(5_1) The cubical complex. In this section we show how the moving
smma gives rise to a specialization structure on the {candidate for the)
pgory of mixed Tate motives constructed using algebraic cycles [2, 3].
t k be a field. Write 0" = (P' — {1 with faces defined by setting
ordinates equal to 0 or oo. The wreath product G of & with 7.2Z"
son (0 by permuting and inverting coordinates. There is a natural
resentation Alt: G — Z/2Z which is the usual alternating representa-
n on the symmetric group and is nontrivial on each factor of Z/2Z.
define ()" to be the vector space of algebraic cycles of codimension
with Q-coefficients on %7 meeting all faces properly and alternating
th respect to the action of . One has a differential

PR (subdivision® (a, b
r (mod cycles whose closure over X meets faces propeﬁy_
By (3.2.2) we have in Z(U, n) '
subdivision® (z) = z mod (8.2 (U, n + 1) + image(Z' (X, n))).
By (3.3.1)

subdivision”(Z) = Y, €()¥(Z)

vES
veriex ’

mod(8Z (U, n+ 1) + image(Z(X , n))

This completes the proof of (4.1.3). Q.ED. _ '

(4.2) End of the proof. We can now prove the moving lemma. We
keep the notations of (4.1). Let { represent a class inl H, (l%') , and let
z e Z(U,n) lift {. Let Z beacycleon UxS§ satisfying (i) and (ii) of

d: " —

¢n by an alternating sum of restrictions to faces. (For more details cf.

(4.1.3). Let ) View the complex 27 (k,-) of codimension r cycles on simplices
Sy— S k as a cohomological complex in negative degrees, so 2" (k, p) is
be blowups of intersections of distinguished divisors so that for gree —p . By [3, §4] one has a quasi-isomorphism
a: [ A" =S 1 K Y = F (k, -2
HES,

vertex ere is also a product structure
we have n'Z meets faces properly, where 2 on X x S is the closure 0_
7 Since Z meets faces properly, it follows that « Z has no compc_?ncnt
supported on faces properly contained in U x ][], A", s0 m Z restrictst

"7 over U. By (4.1.3)(ii),
PRI A2

(Y x A - A (45
tained by composing the external product

D?.r—p « Dls—q o BZ(r+s)—(P+Q)

alternating projection. In sum

= R
represents the class of { in H {¥). By (3.4.2) this class is the same 35 A = e%/" (r)
re
n, * -
(4.2.1) Xs: e(w)¥, (n Z}. 5the structure of a graded differential graded algebra. (A word of warn-
wesy _ the codimension or Adams’s grading on 4 given by the index » in
. o i ! ting - revious formula does not have any effect on signs. The usual conven-
he class (4.2.1) is trivial because 7" Z lifting to a cycle © Z meeb’e. . X
-fl'“ Zsc a::) (ri ir)n lies (since the basepoint ¢ is general) that (4.2.1) Lifts: for graded objects would suggest doubling the r so all groups have
tac properly HIp ¢0 Adams’s grading. We will not do this.)
0

ne has (either [1, main theorem)] which is now available since the
ing lemma has been proved, or by [6])

S e(wy] (x'Z),
wes
vertex

and { = 0. QED 2) H)) =l K, (k) eQ.
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The candidate for the category of mixed Tate motives suggested in 3

the category of finite-dimensional graded co-representations of the o
mutative Hopf algebra '

ecks easily that

B o =identity,
he derived category we have a guasi-isomorphism

(5.1.3) X = H (Bar(#7)), 0 a®b, &N [-1] = A

Here Bar(.#") is the bar construction on the algebra 4 . If a
K(z, 1), ie. if H (Bar(#")) = (0) for = # 0, then this category y
satisfy

y using the easy moving lemma to choose cycles on D;. meeting
G_és of [J; properly, one gets

A
T, ea=1] “’%‘*’%=

Ext’(Q, Q) g} K,,_ (k)& Q
as the Beilinson axioms require.

Let & be a discrete valuation ring with residue field % and quo
fieltd F. We write A, for the analogous complex of cycles on auik
over Spec(®). Note .4, is not an algebra, because the fibre prody
over Spec(?) of cycles meeting faces properly may not itself meet fx
properly. (For example, one has Ay € A, and the fibre product oy
Spec(0) of two cycles in ¥, would not have the right codimensios
However, as a consequence of the “easy” moving lemma [1], A‘; do
have a multiplication in the derived category. There is also a puliba
map in the derived category

(5.1.4) oA, =

(7}’ =0, 7_08, =0, so the assertion of the proposition reduces
o claims: (i) 1, :./!;-A k is_com!)atible with the algebra structure.
i Ny — AL [—1] satisfies the identity

Blx-y)=1,00) By + (-D**¥px) -1 ().

urse, this identity and those that follow below are to hold in the
yed category, and it is abusive to insert elements. The formulas should
terpreted as commutative diagrams of arrows.) Claim (i} reduces by
} to the easily verified equalities

—

Yra()=t00x-3) =i"(x-p) = "(x) -7 (#) = 1, () - T, (),
Tp(a(x) - 0. (1) =0=1 (a{x)) - 7,(0,(3).

m:(ii) follows from the identity

Bla(x)-0,(2) = i"(x) 2 = t a(x) - B(0,(2))

is checked directly on cycles. Q.E.D.
Mixed motives over Spec(Z). We continue to assume k& C & . Let
d x, be as in (5.1.3). The following two results are corollaries of

(5.2} Specialization for .#". Assume henceforth that @ contains k_ a§
subfield. (I would hope the discussion which follows is valid withoui 1h
hypothesis.) The moving lemma and (5.1.1) vield a distinguished triangl

£

(5.2.1) VAR AR

Choose a uniformizing parameter 7 € #, and let {n} e /f‘f‘,,,(l)i be th
O-cycle. Define a map in the derived category '

(5.2.2) T, = f o {multiplication by {r}) : .#. — %, oposition (5.3.1). Let 1 be a variable placed in Adams’s degree 1
‘ F ¢ - H is primitive Jor comultiplication. Then T, induces a homomorphism
Let £ be a variable with Adams’s and cohomeological degree 1 (so & = -@_ aded Hopf algebras

Define in the derived category
(5.2.3) 2 =T, +{mult. by &Yoo §: M = A L]

Proposition (5.2.4). Assuming k C &, we have that T is compatib
in the derived category with the algebra structures.
Proof et p*:.4; — 4, be the pullback. Define

T, xp — X l8d

00f. The point is thal maps in the derived category which are com-
e with the multiplication structure induce maps in the derived cate-
on the bar complex. Q.E.D.

bl X be the augmentation ideal, and write .# = ;(+/(;(*")2 for
Bdecomposibles. Write & for the pro-object dual to . (so the dual
is .4 ). One has M =A dM @ and 4, = k¥ oQ [3).

6, = (mult. by {n}) oo p™ : H[-1]— 4.



8. BLOCH

568

In particular, the valuation map F* — 7 dualizes to 2 homonmg;
of graded Lie algebras i
val : Q_, — %

Proposition (5.3.2). Assume k C & . Then, with the above Hbm
one has a specialization map i
Sp,, : -2 — Zp-

The image of sp, centralizes the image of val.
Proof. Straightforward from (5.3.1). QED.
As mentioned in the introduction, if we write ¥ (M} for the

representation coming via sp, froma finite graded representation

Fr , then val(1) induces a map of mixed Tate motives over Spec(k

(5.3.3) N W (M) = W (M)(-1).

Motivated by the construction of e.g. étale sheaves on Spec(@), we
formulate the following candidate for the category of mixed Tate mo

over Spec(?) .
Definition (3.3.4). The category AT (Spec(@)} has as objects triph

(Mg, My, w)

where M (resp. M. )isa representation of 27 (resp. %) and w
M, = kerNC Y (M) is a map of %, -modules.
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