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p-ADIC HODGE THEORY AND VALUES OF
ZETA FUNCTIONS OF MODULAR FORMS

by

Kazuya Kato

Abstract, — If f is a modular form, we construct an Buler system attached to f
from which we deduce bounds for the Selmer groups of f. An explicit reciprocity law
links this Euler system to the p-adic zeta function of f which allows us to prove a
divisibility statement towards Iwasawa’s main conjecture for f and to obtain lower
bounds for the order of vanishing of this p-adic zeta function. In particular, if fis
associated $o an elliptic curve E defined over @, we prove that the p-adic zeta function
of f has a zero at & = 1 of order at least the rank of the group of rational points
on E.
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Introduction

~ One of the most fascinating subjects in number theory is the study of mysterious
relations between zeta functions and “arithmetic groups”. Here “arithmetic groups”
include ideal class groups of number fields, Mordell-Weil groups of abelian varieties
aver number fields, Selmer groups associated to Galois representations of number
fields, etc., which play important roles in number theory. Among such relations,
we have Iwasawa theory (relation between zeta functions and ideal class groups]
which ig a refinement in 20th century of the class number formula in 1%th century,
Birch Swinnerton-Dyer conjectures (relation between zeta functions and Mordell-Weil

groups), ete., and much of such relations are still conjectural. When we study such. -

relations, a big difficulty is that zeta functions and arithmetic groups are too much
different in nature; zeta functions are analytic and arithmetic groups are algebraic
and it is very difficult to understand why they are closely related.

After Kolygavin, it was recognized that zeta functions have not only the nsual
analytic shapes {Euler products), but also arithmetic shapes (Euler systems), and that
it is useful to consider these arithmetic shapes for the study of relations between zeta
functions and arithmetic groups; it is more casy to understand the relation between
the arithmetic shapes of zeta functions and arithmetic groups which are not far in
nature, than the relation of analytic shapes and arithmetic groups.

f: . .
zeta function L oot . rithmetic groups

(analytic) (algebraic)
Fuler systems BT . arithmetic groups
= arithmetic shapes algebraic
P

of zeta nnctions)
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In this paper, by considering the Euler systems of Beilinson elements in Ko of
modular curves, which are regarded as “arithmetic shapes” of zeta functions of elliptic
modular forms, and by using p-adic Hodge theory, we obtain results on the relations
between zefa functions of elliptic modular forms and Selmer groups associated %o
modular forms, and results in Iwasawa theory of modular forms.

Since it is now known that all elliptic curves over Q are modular {{Wi] [BCDT]),
this gives also results on Birch Swinnerton-Dyer conjectures for elliptic curves over Q).

The main results of this paper are the following. {Please see the text for the precise
statements.)

Theorem. — Let [ be an eigen cusp form for T'y(N) of weight k = 2.

(1) (Thm. 14.2) Letr € Z, } < v < k— 1, and assume v s k/2. Then for any
findte abelian extension K of Q, the Selmer group Sel(K, f,r) of f over K with » twist
is a finite group.

(2} (Thm. 14.2) Assume k is even. Let K be a finste abelian extension of Q. Lel
x ¢ Gal(K/Q) — C* be a character, and assume L{f, x, k/2) £ 0. Then the y-part
Sel(K, £, 5/2)% of Sel(K, f,k/2) is a finite group.

(3) (Thm. 18.4) Assume k is even. Then

p-adic corank of Sel (K, f,k/2) < orde_ys2 (p-odic zeta function of f).
(4) (Thm. 17.4) Assume f is good ordinary ot p. Then

X = Hom(im 8el{Q((or ), f,7), (Qp/Zp) (7))

for 1 < r < k—1 4s independent of r and the characteristic ideal of ¥ divides p™ times
the p-adic zeta function of f for seme n 2 0.

In some cases, we can drop p™ in {4) (Thm 17.4 {3)). This (4} is a partial answer
to a conjecture of Greenberg ([Grl], the case of elliptic curves was conjectured by
Mazur [Mal]) who predicts the equality in place of divisibility in (4). We also cbtain
results on “Twasawa main conjecture for modular forms without p-adic zeta functions”
(Thm. 12.5) and results on Tamagawa number confectures {[BK2]) for modular forms
{Thm, 14.5). :

There are already many results on these subjects (for example, [BD], [CW], [Ru2],
[Ko|, [Nel,...). Most of former works use elliptic units and Heegner points as “arith-
metic shapes of zeta functions”, whereas we use Beilinson elements instead. The part
of the above Theorem concerning eigen cusp forms f with complex multiplication
depends on results of [Ru2| on mair conjectures of imaginary quadratic fields.

The plan of this paper is as follows. In Chapter I, we define Fuler systems of
Beilinson elements in Ky of modular curves (§2) and also Euler systems in the spaces
of modular forms (§4). The former Euler systems are related to limg_gs ' L{f,s)
for cusp forms f of weight 2 by the theory of Beilinson, and the latter Euler systems
are related to the zeta values L(f,7) (r €&, 1 £ r £ k— 1) of cusp forms f of weight
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120 K. KATO

k 2 2 by the theory of Shimura. In Chapter 2, by using the above Euler systems
in Ky of modular forms, we define p-adic Euler systems in the Galois cohomology of
p-adic Galois representations assoeiated to eigen cusp forms of weight = 2 {(§8). We
prove that via p-adic Hodge sheory, these p-adic Euler systems are closely related to
the Buler systems in the space of modular forms (§9), and hence closely related to
the zeta values L(f,7) (r € Z, 1 < r < k — 1) for cusp forms of weight & > 2. In
chapter I1I and Chapter [V, by using this relation of our p-adic Euler systems with
zeta values, and by using the general theory of Euler systems in Galois cohomology,
we obtain our main results.

A large part of results of this paper in the case of modular forms of weight 2 were
introduced in Scholl [Sc2] and Rubin [Ru3].

This work is a continuation of my joint work with S, Bloch on Tamagawa numbers
of motives ([BK2|), and I am very thankful to him for his great influences. I express
my sincere gratitude to J. Coates, M. Kurihara, and T. Saito for their constant en-
couragements in my writing this paper. I am thankful to N. Kurokawa for teaching me
modular forms and Rankin convolutions. I am also thankful to J. Coates, G. Faltings,
M. Flach, H. Hida, N. Katz, M: Kurihara, B. Mazur, T. Shioda, T. Tsuji, A. Wiles,
for advice, and to P. Colmez for corrections on the manuscript.

Some part of this work was done during the author was a visitor of Japan-TUS.
Wath. Inst. in the Jobns Hopkins Univ. in 1990, and some improvements in this
work were obtained during the author was a visitor of Newton Institute in 1993 and
of the Institute for Advanced Study in 1995. I express my sincere gratitude o their
hospitalities.

CHAPTER I

FEULER SYSTEMS IN K; OF MODULAR CURVES AND EULER
SYSTEMS TN THE SPACES OF MODULAR FORMS

In this Chapter I, we consider Euler systems in Ky of modular curves (§2) and
Euler systems in the spaces of modular forms (§4). The former (resp. latter) come
from the work of Beilinson [Be| (resp. Shimurs [Sh]) and are related to the zeta values
limg—g s 'L{f,s) (resp. L(f,r) (1 € r € k—1)) for cusp forms f of weight 2 (resp. &},
by the theory in [Be] (resp. [Sh]).

§1 is a review cn Siegel units (resp. Eisenstein series) and is a preparation for §2
(resp. §4). '
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1. Siegel units

We review the theory of Siegel units which are functions on modular curves having
zeros and poles only on cusps. Cf. [KL).

1.1. For N 2 3, let Y(N) be the modular curve over Q@ of level N without cusps,
which represents the functor

the set of isomorphism classes of triples (E, ey, e3) where F is an elliptic

S { curve over 9 and (e1,e3) 18 & pair of sections of B over S which forms a
Z/N-basis of yE = Ker(N : B — E). :

Cf. [DR].

Y(N) is a smooth irreducible affine curve. The total constant field of Y{N) (the
field of all algebraic numbers in the affine ring O(Y (N)) is not @, but is generated
over Q@ by a primitive N-th root of 1. Let X (V) be the smooth compactification of
V().

IfN, N' 2 3and N | N/, we have a finite étale surjective morphism Y (N') — Y(N)
which represents (F,e1,e2) — (B, (N'/N)ey, (N'/NYeq). We regard O(Y(N}) as &
subring of O{Y(N')) via the pull back.

1.2. The aim of §1 is to review basic facts about the Siegel units

cfap € LFJO(Y(N))X, a6 € K&J@(Y(NDX 2Q

where {a, 8) € (Q/Z)* ~ {(0,0)} and ¢ is an integer which is prime to 6 and to the
crders of a, 8. These elements satisfy

cGap €Y (NN, gupe QY (NN ®@Q if Na=NF=0,
c90.p = (a,8)" (gomes) " 10 O (N))* 0 Q.
We introduce Siegel units by using the following proposition.
Proposition 1.3. — Let E be an elliptic curve over o scheme §. Let ¢ be an integer
which 13 prime to 6. Then:
(1) There exists o unique element 0z of G(F ~ )™ satisfying the following con-
ditions (1) {ii). ’
() <8z has the divisor 2(0) — E on E, where (0) denotes the zers section of

B regarded as o Cartier divisor on B and ,F = Ker(c: B — E) is also regarded
as a Cartier divisor on E.

(i) No(BE) = 05 for any integer a which is prime fo c, where N, is the
norm map O{E ~ 1. B} — C(E ~ FE)* associated to the pull back homomor
phism O(E ~ E) — O(E ~ 4.E) by the multiplication a : B ~ ;.F — E ~ E.
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122 . K. KATO

(2) If d is also an integer which is prime to 6, we have an equality in O(F ~ X

(40m)° (*(o82))7" = (0)" (d" (05)) "

where c* (resp. d*) denotes the pull bock by the multiplication c (resp. d) F — .

(3) Let H = {7 € C; Im(r) > 0} be the upper half plane. For 7 € 5 and z €
C~ ¢ Y(&r + £, let 07, 2) be the value at.z of .0 of the elliptic curve C/(Zr + £)
over C. Then,

WBlr, 2) = g @D 3N ey o)
where g = ™7 t = ™% and
ity =[[a-an [ -at™).
nz0 nzl
(4) Ifh : E — E' is an isogeny of elliptic curves over S whose degree is prime to ¢,

then the norm map h. sends 0g to Og.

The proof of Prop. 1.3 is giver in 1.10 later.

1.4, We define Siegel units.

Tn 1.3, consider the case where E is the universal elliptic curve over Y'(N}, N = 3,
We define cgas. Take N = 1 such that Na = NG = 0, and write (0, ) =
(a/N,b/N) € (FZ/ZY ~ {(0,0)} (a,b € Z), and define

clop = L;,E(CBE) S O(Y(N))X
where
tog = ey +heg | Y(N) — E~ B

Here L;’B(CEE) is defined since the image of ae; + bes does not intersect with the
divisor ,E by the assumptions that ¢ is prime to the orders of o, J and (&, ) # (0,0).

By taking ¢ such that {c,6) =1, c=1 mod N and ¢ # %1, let

fos = cGas ®(~1) €OF (V) @

Then it is seen from 1.3 (2) that g, is independent of the choice of such ¢, and

oGap = (928)% (Goaes) ™ In O (N)* @ Q

for any integer ¢ such that (¢, 68N) = 1.
As elements of Un@(Y (N)* (resp. UnO{Y (N © Q) oguz (Tesp. ga,5) do not
depend on the choice of N above.

Remark 1.5. — To have a perspective view cn Siegel units, a good way would be to '

find some “truth” in the following wrong statement.
“If E is an elliptic curve over a scheme S, there exists an element 8z of O(E ~ (0))"
which has the divisor (0) on E and N,(fz) = 8z for any non-zero integer a. We have

e = ((:?E)C2 (¢*{(8g)) 7. In the case E is the universal elliptic curve over Y {N), we
have go 5 = L;!ﬁ(gg).”
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Though the existence of such dg would nicely explain properties of .0z and of
Siegel units, #5 does not exist in fact since the degree of a principal divisor should
be 0 but (0) has degree 1.

1.6. The group GELo(Z/N) acts on Y{N) from the left in the following way. An
element o = (7 §) € GL2(Z/N) sends (E, ey, e2) to (F, e}, eh) where

ey fa by fe
eh) e df \es/’
The induced action by o on the total constant field sends a primitive N-th root @ of 1

to adetle

Lemma 1.7
2

(1) For o € GLz(Z/N) and for (o, 8) € (FZ/Z)" ~ {(0,0)}, we have

C"*(cga,ﬂ) = Qo 3
0" (ga,p) = o'
where ¢ is any integer which is prime to N and (¢/, ') is defined by (¢, 8') = (o, B)o.
(2) (Distribution property.) Let (o, ) € (Q/2)* ~ {(0,0)}, and lei o be a non-zero
integer. Then
efa.8 = H eforg i JOY(N))™
Q’-’,.ﬁ’ N
Geep = ]___[ Jarg in JOY(N))* ©Q

thﬁ.‘ N
where ¢ is any integer which is prime to a and to the orders of &, 3, and &' (resp. §')
ranges over all elements of Q/Z such that ac’ = « (resp. o = ).

L7 (1} is proved easily. 1.7 (2} is deduced from Ny (c0g) = .05.
1.8. Let Y{N){C) be the set of C~valued points of the (-scheme ¥ (N). We have a
canonical map
v:f — Y((NUC); »— (C/(Zr +Z),7/N,1/N).

Via v, we often regard elements of O(Y (N)) as functions on §). The standard action
of SLq(Z) on H arnd the above action of GL:(Z/N) on Y(N)(C) are compatible via
v. We have an isomorphism of analytic spaces

@8 X TN = Y5 @)= (5 ) v

where (V) = Ker(3Ly(Z) — SLa{Z/N}).
The C-valued points v(7) of Y (N) for + €  give a common homomorphism from
the total constant field of Y (V) into C. We always regard the total constant field of
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124 K. KATO

Y(N) as a subfleld of € via this homomeorphism. In this paper, (x denctes 27i/N
which generates this total constant field.

1.9. The pull back of g, 4 ({0, B) € (%,*Z/ZZ)2 ~{(0,0)}) under v : §§ — Y (N)(C) is
the function .0¢/(zr1zy{0r + 5 mod Z7 + Z) in 7 € H. From 1.3 {3), we can deduce
that the pull back of g,/n s/ o0 Hlora, b€ Z, 0 < e < N, {g mod N,b mod N)
(0,9) is equal to

qw . H(l n a/N H(quﬂ, 7a/N N )

nz0 n>0

where w = 1/12 — o/2N + {(1/2)(a/N?). Here ¢* for & € @ means e2me7

1.10. We prave Frop. 1.3. (See [Sc2, §1.2] for another proof.)

We prove 1.3 (1). We first prove the uniqueness of ,#z. Let f and ¢ be elements
of O(F ~ .E)” having the properties (i) (i) of ;85 Then g = uf for some invertible
constant u € O(S)X. For an integer ¢ which is prime to ¢, we. have g = Nglg) =
No(uf) = u® ' {since a : £ — F is of degree a") and hence v* ~! = 1. By taking
4 = 2 (resp. ¢ = 3), we have u® =1 (resp. u® = 1). Hence u = 1.

Next we prove the existence of ,fz. Since we have already the uniqueness, we can
work locally on . First we show that locally on 8, ¢?(0)— /7 is a principal divisor. For
this, by “Abel’s theorem” it is sufficient to prove that the image of ¢*(0) — .E under the
isomorpism of Abel Pic(E)***=" — E(S) is zero. For any integer a which is prime to
¢, the image of the divisor ¢*(0) — & under the multiplication a : E — F is ¢3(0) —
itself. Since the map a. on Pic(E)4%5=0 is compatible with the multiplication by a
on E{S) via the isomorphism of Abel, the image of ¢2(0) — .F in E(S) is mvariant
under the muitiplication by o. By taking ¢ = 2, we see that the image of c2(0) — B
in (5] is zero. Now by what we have proved, there exists locally on § a function
f € O{E ~ .E)” having the divisor ¢2(0} — ,F. If ¢ is an integer which is prime to ¢,
the divisor of Ny{f), which is the image of ¢*(0) — .F under the multiplication by a,
is equal to ¢*(0) — .E. Hence N, (/) has the same divisor as f and so ] Ng(f) = ugf for
some invertible constant ug. If b is aiso an integer which is prime to ¢, Ny Ny = Ny NV,

2
shows that ub 1=y “L Hence if we put ¢ = uy Yugf we have

.. —3a? g2 _=3(a’-1)_ a2t —3(2%-1)_3%-1
Nolg) = ug ™ uf uaf = ug U3 | Ugl = Uy ( }ua Ugg = §.

Hence g has the properties (i} (ii) of .9x. Since we have already the uniqueness, this
local existence of .8p proves the global existence; of .fg. i

We prove 1.3 (2). As is easily seen, both (405) (c"(402)) " and (.85)* (d* (.05)) "
have the same divisor 2d*(0) — 24 B — d?.F + 4 F. Let u € O(S)* be the ratio
of these two elements. Since these two elements are invariant under Ny and N;, we
have by applying Na (resp. N3) that u? = u (resp. v = u). Hence u = 1.
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We prove 1.3 (3). Let
Flz) = gD (g dlemeh "‘/q(f)cz’yq (#9771 where t = %72,

Then it is directly checked that as a function of ¢, f(z) is invaziant under the trans-
formation ¢ — ¢t. Hence f{z) depends only on z mod Zr + Z. Hence f(z) is a
meromorphic function on B = C/{Z7 + Z). It i seen easily that this function has the
characterizing properties (i) (i) of .8z in (1).

We prove 1.3 (4). For any integer o which is prime to ¢, we have

Nah'*(cgE) = h*Na(cgE) - hx(cgE)

Since the degree of A is prime to ¢, 1.{.85) has the divisor ¢2(0) — £, Hence by the
uniqueness of g, we have h.(0g) =, 0p.

2. Euler systems in Kq of modular curves

2.1. In this section, we congider “zeta elements {elements which are related to zeta
functions)” in Ky of the modular curves Y (M, N).

For M, N = 1, the modular curves Y{M, V) are defined as follows.
* Take L 2 3 such that M | L, N | L. Define

Y{M,N) = G\Y (L}

where

G = { (i Z) € GLa(Z/L);

a=1mod M, b=0mod M, c=0 mod N, dElmodN}

Then Y{M, N} is independent of the choice of L.
We have Y(N,N)=Y(N)if N 23
Let X{M, N} be the smooth compactification of ¥ (M, N).
I M+ N 2z 5, the Q-scheme ¥ (M, N} represents the functor

the set of isomorphism classes of triples (F, ey, e} where F is an elliptic
S+— ¢ curve over S and e; and e; are sections of F over S such that AMe; =
Neg =0and Z/M x Z/N — E; (a,b) = ae1 + bey is injective,

The canonical morphism Y(L) — Y(M,N) (M | L, N | L) represents (E, e, e2) —
(E,(L/M)e1,(L/N)ea).
Tn the rest of this section, except in 2.8, we always assume

M, Nz2 M+NZ25
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126 K. KATO

2.2. For integers ¢, d such that {¢,6M) = 1 and (d,6N) = 1, we define elements
s,d 20, N, which we call “zeta elements” by

ed 20,0 = {ef1/mm ado v € Ko(Y (M, N)).
Note og1/a1,0 € QY (M, 1))" and 490,17 € OY (1, N)}™ by 1.7 (1). We define an
element zas n, which we call also a zeta element, by
e = {91700, 90,1/} € Ko(Y{M, N} @ Q.
‘We have

cazaan = (F= (59 )(# - (33)) - 2 i Ka(Y(M,N)) @ Q.

Here, for a € (Z/M)™ and b € (Z/N}", ()" denotes the pull back by the action of
(29) on Y(M,N) which represents {E, e1,ea) -+ (E, ae1, bep).

In 2.3 and 2.4 below, we consider the behavior of zeta elements under norm ho-
momorphisms, and in 2.6, we consider the relation between zeta elements and zeta
functions.

Proposition 2.3. — Let M', N' 2 2, and assume M | M', N | N'. Assume further
that

prime{M) = prime(M"), prime(N) = prime(N'),

where for an integer a = 1, prime{a) denoies the set of all prime divisors of a. Then,
the norm homomorphism

Ko (Y (M, N')) — Ka(¥ (M, N))

sends o g 2apr o 10 o g %a v Jor any integers c, d such that (c,6M) =1 and (d,6N) = 1.
After @ Q, it sends Zpgr NY B0 Zag N -

Proposition 2.4. — Let £ be o prime number which does not divide M. Let ¢, d be
integers such that (c,6ME) =1 and {d,6N8) =1. .
Then the norm homomorphism

K (V(MLNE) — Ky(Y (M, N))
sends o d2ae, Ve to
( (Y20 4 (162 13@)*' ).C’dzM'N
in the case £ does not divide N, and to
(1 - (M 2)*) C e, dZMN

in the case £ divides N. Here T'(£) is the “dual Hecke operator” explained in 2.9 below.
The similar statement holds for zpyo ne ond zp N (after @ Q).

The proofs of 2.3 and 2.4 are given in 2.11-2.13 below.
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2.5. We next describe how zeta elements are related to zeta functions.
We consider the operator-valued zeta function

Zyn(s) = Z T(n)(lfntll) e
{rn,M)=1

(T"(n) is the dual Hecke operator explained in 2.9 below), acting on H' (Y (M, N)(C), C).
(Here Y (M, N){(C) denotes the set of C-valued points of Y{M,N) as a (-scheme.)
This converges abgolutely when Re{s) > 2. This function Zay, (s} has a presentation
a5 an Euler product whose Euler factor at a prime number £ is

% -1
(1-T@CE e+ CF ) 87) i MV =1,

-1
(l—T’(i’(l/”) e ) if (4,M)=1 and £|N,
1if 4] M.

The function Zas y(s) has an analytic continuation to the whole C as an opera-
tor valued meromorphic function in s, and is holomorphic at s # 2. Furthermeore,

ZM’N(O) =0.
As is reviewed in 2.10 below, we have the regulator map

Ty v K2 (Y (M, N)) — BYY (M, N C),R ).
As is explained in 2.7 below, we have a special element
Sar i € HYY (M, NYC),Z).
Let
()% = 5 - (v = {6as,)) € HHY (M, N)(©), Q)

where ¢ denotes the pull back by the complex conjugation on Y {M, N){C).
The following Thm. 2.6 is deduced from the work of Beilinsen in [Be, §51. We will
give the proof of Thm. 2.6 in §7.

Theorem 2.6. — Assume prime(M) < prime(N). Then we have
1 . -
regyn{zm,n) = m o Zarn(s)  2mi- S w) -

2.7. The definition of the special cohomology class day, v is as follows.
By Poincaré duality, the canonical pairing
HY(Y (M, N)(T), E) x BA(Y (M, N){C),Z) — Z
(I} means the compact support cohomology) induces isomorphisms
(2.7.1) HY(Y (M, N)(C),Z) = Hom (HL(Y (M, N)(C),Z),Z)
= Hy (X (M, N){C), {cusps}, Z),

where
{eusps} = X (M, N)(C) ~ Y{M, N)(CT)
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We define 6y, v € H (Y (M, N)(C),Z) to be the image of
class{p} € Hy (X (M, N)(C), {cusps}, Z)
under (2.7.1), where ¢ is the continuous map
(0,00) — XIN)T)s5 ly) = vlyi) for 0 <y < oo,
which is a route from a cusp to a cusp.
2.8. (In 2.8, we &0 not make the assumptions M, N 2 2, M + N = 5.) We give a

preliminary to introduce Hecke operators.
For A = 1, define Q-schemes

Y(M,N(4)), Y(M(A),N)

as follows. Take I > 3 such that M | L and AN | L (resp. AM | L and N | L).
Define ¥'{M, N{A)) (resp. Y (M (A4), N)) to be the guotient of ¥{L} by the action of
the subgroup of GLy(Z/L) consisting of {‘;‘ g) such that

6=1mod M, b=0mod M (resp. AM},
c=1{ mod AN (resp. N), d=1 mod N.
We have canonical projecticns
Y(M,AN) — Y(M,N(A)) — Y{M, N},
Y(AM, N) — Y(M(4), N) — ¥ (M, N).
Now agsume M + N > 5. Then the Q-scheme Y (M, N(A4)) (vesp. Y(M({A), N}

represents the functor

the set of isomorphism classes of (B, e1, ez, (7} where {F, eq, e5) gives an §-
S+— ¢ valued point of ¥'(AM, N) and C is a cyclic subgroup scheme of E of order
AN (resp. AM) satisfying the following condition.

The condition is that ' contains the section eq (resp. ;) and the homomorphism
/M x C— E; (z,9)— me1 +y
(resp. CxZ/N — E; (z,y)— =+ yez)
is injective.

The canonical projections Y(M,N{4)) — Y{(M,N) and Y(M(A),N) —
Y(M,N) are given by (E e1,e3, () — {(H e, es), and the canonical projec-
tion Y(M,AN) — ¥ (M,N(A)) {resp. V{AM,N) — ¥{M(A),N)) is given by
(B er,ea) = (B, Aey, e, Zea) (vesp. (F,e1,e3) — (B, Aeq, eq, Zeq)).

We have an isomorphism

wa  Y(M,N(A)) = YV(M{A),N)
(Ea €1, €3, C) b (Efa 6’1, 8123 C")
where E' = E/NC, ¢) is the image of e1 in F/, € is the image of A=le; N C in F,

and C' is the image of A™'Ze; in E'. Here A~ley (resp. A~ Ze;) denctes the inverse
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image of ey (resp. Zey) under the multiplication by A. (A~tea N is just a closed
subscheme of &, but the image of A™tes N C in B’ becomes a section of E over 5.}
The inverse morphism of @4 is given by
Pt Y(M(A),N) = Y{M, N(A4))
(B, e1,e9,C) — (Eja eis 612! Cr)
where E' = E/MC, ¢| is the image of A™le; NC in £, €} is the image of es in E,
and €' is the image of A™Ze; in E.
If we denote the canonical morphisms
H — Y{M, ANNC) and 5 — Y(M{A), NY(C)
{induced by v : § — Y{AMN){C)) both by v, wa is the unique morphism satisfying
walv(r)) = v(d7) for any 7€ H.

2.9. The Hecke operators 7'(n) and the dual Hecke operators TV(n} {n 2= 1,
(n, M) = 1) on Ko (Y (M, V) and on BY(Y (M, N)(C), Z) are defined as follows.

First, T{1) = T"(1) = 1.

Next, we give the definitions of T(¢) and T7(#) for a prime number £ which does
not divide M. Let

pr: Y{M,N()) — Y(M,N) and p': Y{M(4), N) — Y{M,N)
be the canonical projections. We define
T(6) = (pr')uo (97 ") opr®, T'() =pr, opfo (o).

Here ( }* means the pull back and { ), means the norm (or trace) homomorphism.

If £ does not divide NV, we have

T'(8) = T(6)(§ 1J¢) -

In the case n is a power £° (e = 0) of a prime number ¢ which does not divide M,
T(n) and T(n) are defined as follows. If £ | N, T(45) = T(£)°, T"{£e) = T"(£)°. If 4
does not divide NV, T{£%) and TV{#%) are defined inductively, by

T(eH2) = T{OT () + T (L0 0) -4,

T’(£e+2) _ Tf(g)Tl(ee-kl) —}—TI(EE)( 1(/)2 2)* £,

Finally, for n = [[, €59 (e{f) > 0) where £ ranges over all prime numbers which
do not divide M, T'{n) and I'{n) are defined by

T(n} = HT(EE(@% Tf(ﬂ) — HT’(EE“’)).
£ [

Then, for any m, n = 1 such that (mn, M) = 1 and for any a € (Z/M)*, b €
(Z/N)*, the operators T(m), T(n), T'(m), T'(n), ()" commute with each other.
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In the Poincaré duality

T'(n) and T'(n) are transposes of each other.

2.10. Let Y be a smooth algebraic curve over C. We review the definition of the
regulator map ([Bej)

K3(Y) — HH YO, R -4).

(In cur application, Y is taken to be Y{M, N} ®5 C.) Since ¥ is a disjoint union of
smooth connected curves, the definition is reduced to the case Y is connected. Now
assuming ¥ is connected, let A be the function field of Y. First, we define

Ka(K) — Lm H (U(C), R -)
1

where [/ ranges over all non-empty Zariski open set of V. For f, g € K, let U be a
Zariski open set of ¥ such that f, g € O(U)". Define a C*-differential form n;, on
U{C) by

n5.e = log{|f1) - dlog(glgi ") — log(lg]) - dlog(f| £I™1).

Then dny,, = 0, and hence class(nr,,) € HY(U(C),R - 1) is defined. Tt can be shown
that the map

E* @ K — Im T U(C),R-4); f® g class(ngg)
tr

factors through the canonical surjection
K o K" —EKyK); fogr——1{f g}
. We have a commutative diagram of exact sequences

d
KaV) ——————— Ka(K) ——— Bper ©°

o —— H(Y(C), R §) —— lig,, HY(U(C), R - §) -2, Brevig R

where the tight vertical arrow is z — log(|z]), the y-component of the upper @ for
y € Y{(C) is the tame symbol map

{fgb — {097 Hy) (m=ordy(f), n=ordy(g))

and the y-compenent of the lower J is (2m’)_1 times the evaluation at the homology
class of a small loop around 4 with the standard orientation. This diagram defines
the regulator map Ko(Y) — HYY{C), R - 4).
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2.11. We prove Prop. 2.3.

In general, i f : I/ — V' is a morphism of schemes which is finite and localiy free,
and if u € O(U)™ and v € O(V)™, the norm map f. : K2(U) — Ko(V) satisfies the
projection formula

f*({u,fu}) = {f*(u),'u}, f*({vau}) = {fuﬂ f*(u)}

where f.(u} denotes the image of u under the norm map QU — O(V)™,

Hence, it is enough to prove the case M’ = M and the case N' = N. Since the both
cases are proved similarly, we assume ¥ = V', In this case, our task is to prove that if
M | M’ and prime(M) = prime{M"), the norm map O(Y{M’, N)}* — O(Y (M, N))*
sends ¢ g104 0 50 e 1/0,0-

Take an integer L 2 3 such that M’ | L and N | L. Let a = M'/M, let G be
the subgroup of GL2(Z/L} corresponding to ¥ (M, N), and let H he the subgroup
of G corresponding to Y (M’, N). For each {x,3) € (Z/a)?, fix an elemert Spy of
GLa2(Z/L) of the form (M M* M*) guch that » =z mod a and v =y mod a. (This
is possible because prime(M’) = prime(i4).) Then s,, for (z,y) € (Z/a)’ form a
system of representatives of H\G. Hence the norm homomorphism QY (M', N))™ —
QY (M, N))" sends ,g1/3/ 0 to

H 55 ledipra) = H e /MY (zfa)yla = cF1/M,0
(=) €(B/a)? (=) E(Efa)?
where the first equation follews from 1.7 (1) and the second follows from 1.7 (2).

We give a preliminary lemma for the proof of Prop 2.4.

Lemma 2.12. — Let (o, 8) € (Q/2)* ~ {{0,0)}. Let A 2 1, and let ¢ be an integer
which is prime to 6 A and to the orders of a, 3. Then we have

@a(cgo8) = [ [ egae
'Gf

fie. oGop(AT) = Iy cgap{r) as functions on $) where 3’ ranges over all elements
of Q/Z such that AF = 3.

Thig is proved by using the analytic presentation 1.3 (3) of Siegel units.

2.13. We prove Prop. 24.
Take L 2 3 such that A4 | L, N | L.
The morphism ¥ {M¥¢, N2) — Y(M, N) factors as

Y(ME, NE) — Y (I, NI) — Y (M, N(£)) — ¥ (M, N).

Let Go, G1, G, Gs be the subgroups of GLa{Z/L#) corresponding to Y (M£, NJ),
Y(M, N2, Y{M,N(8), Y(M,N), respectively. (So, Gy C Gy C Gy C (3.)
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Step 1.— First we show that the norm map Ko(Y (342, N£)) — Ka(Y(M, N£}) sends
chMg ~e to {cgimo @l (cg;'é))d‘gQ,l/Ng} where o denotes the unique element of
+Z/Z such that fo = 1/M.

In fact, since agg1/ne € O(Y (M, NE))™, it is enough to show that the norm map
O(Y (ML, NI — Y (M, NDY" sends cGi/nen YO 2gimae0 ¢ 0 (cg;i;)- For each
(%,y) € (Z/1)" x Z/2, fix an element 55, of GLa(Z/LE) of the form (¥ ¥} such that
v =1mod M, v=0mod M, » = Mr mod £, v = My mod £ Then s, for
(z,y) € (Z/8)" x Z/¢ form a system of representatives of (Fo\(;. Hence the norm
map QY (ME NI — OV (M, NOY sends cf1/me,0 tO

H 5y, (/e n) = H o Fet(n/t) /2
(mp)E(Z/ )% <LfE (z) C(B/E)% w272
-1
:( 11 c9a+(w/f),y/e) ( II cga‘yﬂa)
(my)e(Z/ ) vEZ/E

= cl1/M,0 Wy (Cga 0) by L.7 ( ) and 2.12.
Step 2.— We show that the norm map Ka(¥ (M, N&)) — K:(YV (M, N(£))) sends
{ed1/a0 "ﬂzfcg;é)adga,l/w} to

(dgo,l/N)}
(ago,1/n) - 285 5})

{c.gl/MD wyle G )a‘PE
(resp. {QlfMu il ):‘PE

in the case £ divides N (resp. does not divide ¥, where 3 is the unique element of
+Z/Z such that £3 = 1/N).

¥or each z € Z/Z (resp. (Z/2)"), fix an element s, of GLy(Z/L£) of the form (} ©
such that u = 1+ Nz mod N¥ (resp. u = 1 mod N and 4 = Nz mod £). Then s, for
z € Z/¢ (resp. (Z/£)") form a system of representatives of (\(33. Hence the norm
map NV (M, N — O(Y(IVLN(E)))X sends ygo 1 me tO

H EMET AfNe = H A0, (1/NE+{z/2) (vesp. H 290,84+ (z/2) )
=yilagon) (resp. w; (a!gc,1/N) “adep) by 2.12.
Sinee cgia0 - 95 (cFa0) € QY (M, N{Z)))™, this proves the above statenent on the

Ko-norm map Ks(Y (M, N{)) — Ka (Y (M, N(£))).
It remains to consider what happens in Ko (Y (M, N(£)}) — Ky(Y (M, N)).

Step 8.— We will prove the following (2.13.1) and (2.13.2) in Step 4. Let pr :
Y (M, N(&)) — Y(M,N) be the canonical projection.

(2.13.1) In the case £| N, pr.e;{ago:/v) = al01/n-
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{2.13.2) In the case ¢ does not divide N, we have
. £
jramter (cga,o} = cdi/M0 (cga,o)
. 4
pr.g (ago/n) = afo1/w - (s90.8)"

We prove Prop. 2.4 by using these (2.13.1), (2.13.2).
First agsume £ | N. Then, the norm map Ko(Y (M4, N2)) — Ko(¥ (M, N)) sends
c,d Zadg, Nz 10

o1, {10,095 (95700, 9% (agoa/n)} (by Step 1 and Step 2)
= {cguM,o, PF*@E(on,l/N)} - TJ(E){CQ(I,D,dQO,l/N}
= cazuin — T (azan) (by (2.13.1)).
Next assume £ does not divide N. Then the norm map Ky(¥Y(M¢, N2)) —
Kz (Y (M, N)) sends c,dZage,ne B0
pro{egi/nro - 9i (9o} i (ago./v)  (ags 5)} (by Step 1 and Step 2)
= {eg1/m 0,007 (2 90,1/8) } — T (0 {0900, a0/}
~(E+1{e01/m0, 490,83 + {Prai (c90.0) agdos}
(here £+ 1 appears because ¥ (M, N(£}) is of degree £ + 1 over Y (M, N) in the case
£ does not divide N)
= o dEMN — T'(f)( 1/t ?) edZan +( c/, 1/3) £cazay by (2.13.2).

Step 4.— We prove the statements (2.13.1), {2.13.2). Since the three equalities
in (2.13.1), (2.13.2) are proved in the similar way, we give here only the proof of
pr.ei{agoayn) = ago,yn - (oo, )¢ in the case £ does not divide N. For each z € Z/4,
fix an element s; of GL2(Z/¢) of the form (} §) such that w = 0 mod N, u = z mod 4,
Let o be an element of GLa(Z/L£) whose image in GLz(Z/N) is (5 9) and whose im-
age in GL3(Z/£) is ($3}. Then s, for = € Z/4 and o form a system of representatives
of Ga\(73. Hence

P, (40,1 /) ( I sxeitago 1/N)) -~ pp{agow).
wE€E/E
Since @} (ago,1/n) = HyEZ/,E 4 90,3+ (y/2) We have
2
H s307(ag0,1/M) H dJzy /e84 (u/8) = ( H dgz/e,ﬁ+(y/e)) (ago,a)

zER/E z,yEE/L T, yEL/E
y#0

On the other hand,

o (ago,1/n) H dGy/e,3-
yEE/E
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Hence

P lago/n) = ( I ageiea y/e)) (490,8)° = a0y - (agop)’ Dy 1.7 (2).
z.yeL/

3. Eisenstein series

The aim of this section is to review the basic facts about Eisenstein series. See
Weil [We], Katz [KN], Katz-Mazur [KM] for the proofs of the results introduced
here.

Let N = 3, let X{N) be the smooth compactification of Y'(N), and let M {X(NY)
{k € Z) be the space of modular forms on X (V) of weight k. (We review the definition
of Mi(X(N)) in 3.1.) In this section, we introduce the following modular forms
indexed by (o, £) € (Q/ 7)?, called Eisenstein series.

() ES) & Uy Ml X (V) (k2 1,k #2).

(i) By € Uy MalX (V).

(ES% is something like “Eff) Eoz)” but the modular forms E do not exist.)

(iit) Fg?i € Uy Mp(X{N)) (k = 1; we assume (e, ) # (0,0) in the case k = 2).

If Na= N3 = 0, the elements (i) (iii) belong to Mx(X(N)), and the elements (ii)
belong to Ma(X (V).

We define these elements algebraically in 3.2-3.6 first, and then give the analytic
presentations of them in 3.8.

Fisenstein series are additive analogues of Siegel units (which are multiplicative
elements).

3.1. We introduce algebraic definitions of My (X () and of the subspace Sk(X(N})
of My (X{N}) consisting of cusp forrms.
Let A: E — Y{N) be the universal elliptic curve, and let

be the smooth Néron model of E over X (V). Let
calie(E) = X, (Q%/X(N) )

Then coLie(E) is an invertible Ox yy-module, and

Q}E/X = X" coLie(E).
Define
(3.1.1) Mu(X(N)) = T(X(IV), colie(B)™).

We have another equivalent definition

(3.12)  My(X(N)) = T{X(N),coLie(B)*" ™"

Roxny Yo ellos{cusps)))
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where Q}(( ) /@(log(cu3ps)) denctes the sheal of differential forms on X (N) with log
poles at cusps.

The equivalence of the two definitions (3.1.1) and (3.1.2) is given by the isomor-

phism —(3.1.4) below. Denote A, (Q}E/Yw)) by colie{£). We have a canonical homo-
morphism

(3.1.3) coLie{E) — by g Qo B A(OF)
on Y'(NV) as the connecting map of the exact sequence
0 — A Qriwyn) — Qg — Upviny — 0
By composing (3.1.3) with the Serre duality
R*A(O5) ®or(ayy coLie(B) = R*A (D) Qo) Ax Q%) — Oviny,
we obtain the composite map
coLie(E)®? — Q0 Soru) R ALOE) 8oy vy colie(B) — Oy, -
Tt is known {[KM, 10.13]) that this composite map induces an iscmorphism
{3.1.4) coLie(E)? = O ) p{log(cusps)).
The space Si(X(NV)} of cusp forms on X (N) of weight & is defined by
8e(X(V)) = T(X(V), coLie () ** ™ @o, .y Wqaysa) © MelX(N)).
3.2. We define elements
W e Mu(X(N)) for k21 and (o8 € (27/7)°,
where ¢ is an integer which i prime to 6/¥. Once the elements E® Ny fork =1,k #2
and the elements E‘( g are defined, cE( 23 is expressed as
CES,% =EF, B L for k1, k#2,
B = 2EP), - 2E§fjcﬁ

But it is convenient to define E( ) first, by using the theta function .fg in Prop. 1.3.
Let the notation be as in 1.3.

Tet ¢ be an integer which is prime to 6, and consider the element
dlog(.8g) € T'(E ~ CE’Q‘IE‘/Y(N)) =T(E ~ .E, A" coLie( E)).
For r € Z, let
D : M coLie(B)®" —s A*coLie( E)® T
be the map defined locally by

f ®w®r — g'i & w@(ﬂ"“rl)j
W
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where f € Og, w is a local basis of coLie(E), and df /w € Of is determined by

df .
df = (MJ) cw in Q%E/Y(N)'
For & = 1, we have an element
DY dlog(.8z) € T(E ~ B, \coLie( E)®").
Now for (o, 8) € (%Z/Z)z ~ {(0,0)}, assuming (¢, 6N) = 1, we define
B = 07 (DFVdlog(.0)) € T(Y(N), colie(5) %)

where Lopg : Y(N) — F~ .F is as in 1.4. Then cE,S% belongs to M (X(N})) C
D(Y (N, colie{ B)®%),

We next define CEéf“D) for k& = 1 and for an integer ¢ such that (¢,6) = 1. The

following is deduced from N,{(.0r) = ¢95:
If (a,8) € (Q/Z) ~ {(0,0}}, a, c € Z~ {0}, and if ¢ is prime o 6a and to the

orders of o, 3, then
P
FES Y B,
&I ,54‘
where o (resp. ') ranges over all of /7 such that aa’ = o (tesp. o’ = ).
This shows that the following element cEé’:cU) is independent of the choice of a # £1
which is prime to c:

k
By = (" 1) 12 Euh

where 3 is the sum over all non-zero elements (@, ) of (%Z/Z)z.
3.3. We define B} € My(X(N)) for k2 1, k # 2 and for (o, 8) € {£Z/Z)°. From
Prop. 1.3 (2}, we obtam

4 Eék;)a Ec(:n: Y =d*.Eyy —d° Ec(ii L4

for any integers ¢, d which are prime to 6. This shows that if we take ¢ which is
prime to 6N such that ¢ = L mod N and ¢ # +1, then

k )
Blp = (@ =T ES,
is independent of the choice of such ¢. We have

B = 2EE FED L for k#2 and (a,8) € (/2

where ¢ i3 any integer which is prime to 6 and to the orders of &, 3.
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3.4. We define B} € My(X (N)) for (o, ) € (Lz/77).

In general, if f: E' — $ is an elliptic curve over a scheme § on which 6 is invertible,
there exists locally on § a pair (w, ) satisfying the followmg conditions; w is a basis of
the invertible Os-module coLie(E), = is a section of /=2 where I denotes the invertible
ideal of (g defining the origin of &, the image of z in FlI7D/ £ (I71) is a basis of
the invertible Og-module f,(I=2)/£,(7~1), and there exist sections a, b of Og such
that

day 2 3
(ﬁ) =4zx” 4 az 4 b.
w

Here 92 is defined by dz = (323 in I- *Qf,g. PFurthermore, z ® w® & I2.

F* coLie(E)® is independent of the choice of such pair {z,w), and hence i defined
globally on S. Take ¥'(IV) as § and the universal ellintic curve as E and let

pe (B, 172 freoliel 5)%)

be the section which is locally z ® w®? for a pair (x,w) as above.
Now let (@, §) € (%zm)z ~ {(0,0)}. We define

EP) =it 4(p) € T{Y (), coLie(E)®?).

Then Ef,}@ belongs to My (X{N)) C T{Y{V), coLie(E)®*).
We define

B -
3.5. 'Fhe constructions in 3.2-3.3 and those in 3.4 are related as follows. We have
(3.5.1) Ddlogi 05 = Cp —c*p

(F is the universal eliiptic curve) where ¢* denotes the pull back by the multiplication
by ¢: £ — F. (This can be proved for example, by using the analytic descriptions of
# and D dlog(. 85} given ir 3.8 below.) From this we have for any k=2

{3.5.2) DF L dlog(o8p) = EDP 2 — " DF2p,
From (3.5.1) and (3.5.2}, we have for (o, ) € (Q/Z)° ~ {(0,0)}
B0, = 5 AED
(this formula holds also in the case (o, ) = (0,0)) and
Eg% =i 4(DF ) for k23

(this formula presents another algebraic definition of Eg”')@ for k = 3).
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3.6. Next we define the elements Fa(eké € Mu{X(N)} for k 2 1 (we assume (&, 8) #
{0,0) in the case k = 2).
For (@,f) € (iZ/Z)g. writing o = a/N, 3 = b/N, define

P =N B ST € M X(N)) (here ki # 2),
T YEL/N

FE=N? 3 B2l i 0T € Ma(X(NY) (nere (o, 8} # (6,0)).
z.yEL/N

By the “distribution property” (i) (i) of 3.7 (2) below, oy w5 18 Independent of the
choices of N, @, b such that o = o/N and 3 = b/N. We have

(k) . prk— {k) ba:—u: B
Ea/Nb/N NE E Fonam S 0 i k#2.
zyeL/N

In the case &k = 2, we have the formula for E(/N pn Of the same form, except that
(, ) ranges in this case over all elements of (Z/N)* ~ {{G,0)}.
The following 3.7 is an additive analogue of 1.7.
Lemma3.7. — Letk = 1.
(1) Let o € GLa(Z/NY, (@ ) € (SZ/2)°, (¢, 8) = (@, 8) - 0. Then we have:
f) o* (E(’“)) EU” 12 ifk#2.
(i) o*(F2) = B9,
(iii) *(Fﬁ)) F(!“ﬁ, ; here, we assume (a, 5} # {0,0) in the case k = 2.
(2) (Distribution property.) Let (o, 8) € (Q/Z), a € Z, a # 0. Then we have

the following equalities where o' (resp. 3') ranges over all elements of Q/Z such that
za' = o and aﬁ" a.

() a°By = T g By, ik #2.
('3 =(7)
( ) ZEC{H_EQI ﬁl Eal 61‘
(111) a’ kFU”) = Y e Fa ‘5 1 here, we assume {a, ) # (0,0) in the case
k=

(1) is proved easily. (2) is deduced from the analytic descriptions of Eisenstein
series given in 3.8 below.

3.8. We review the analytic theory of Hisenstein series.
Let A 1 E — Y(N) be the universal elliptic curve. Then we have a cartesian
diagram
(B xC) ~»—— E(C)

| A

H —F—s Y(N)(C)
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where ~ is the equivalence relation defined as follows. For (r,z), (v, € H = C,
(r,2) ~ {7/, #') if and enly if 7 =7’ and z — 2’ € Zr + Z.

Let (r,2) be the standard coordinate of § x C. Then the pull back of F €
M(X(N)) to H is written in the form

® e
Forme(®) =) = i) o i)

where f(7) is & holomorphic function on § satisfying

b

a.r+b)7 (er+d)¥f(r) for all (i d) e D(N).

cT

#(

Classically, this f was called a modular form. We will identify an element F of
My (X (N)) with the above holomorphic function f (7).
It is known ([IKKM, 10.13]) that the isomorphism (3.1.4)

coLie(E) 7 o O (vy/qlog(cusps))

sends (dt/t) to dg/g (g = e¥*").

We now describe the pull backs on § »x € or on $, of the cbjects which appeared
in this section.

First, p in 3.4 is described as

6 = plr, 2) ® (2midz)®
where p(T, z) is Weierstrass’ p-function defined by

p(r, 2) = (2m0)™? (z‘2 + Z {z+mr+n)™" = (mr+ n)fg}).

(m,n)€E?
{m,n)F#(0,0)

Define functions EY¥}(r,2) on 5 x € and functions E&% on H (k=0 (0,8 €
(Q/Z)*; we assume (o, 8) # (0, 0) in the case k = 0) as follows. (If & # 0, 2, as
in (3.8. 4) below, this notation E 25 is compatible with the notation for the modular

forms Ea ﬁ.) If k > 3, the definitions are simply

E® () = (<1 - (-1 m) F Y emr )
(m,n)eZ?

E¥(r) = BW{(r,@r + §) for (a,8) # (0,0)
where (a,ﬁ) is a lifting of (¢, 3) to Q% -
EE () = (1" (=1 (2m) 7 S e+

(m,n)€2*

(m,n)#(0.0)
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To include the cases k =0, 1, 2, define for k 2 0

E(k,1,z,8) = Z (z+mr +n) |z +-m7 +n|°
{m,n)EE2

Epoik ms) = Z (mr + n)fklm‘r +nf™
(m,n)ez?
(m,n}#(0.0}

These series converge absolutely when k + Re(z) > 2. When k, 7, z are fixed,
these functions m s have analytic continuations as meromorphic functions on the
whole s-plane. These functions for k 2 1 are holomorphic on the whole s-plane, and
E{0,7,2z,3) has a zero at s = 0. Let

ER ()= (-1)* (k= 1)1 - 2m) "Bk, 7, 2,0) for k21
E®(r 2 = lir% sTUE(0, 7, 2, 8),
Egk%(q') = E¥(r,@r+8) for k20 and (a,8) % (0,0)
where (&, E) is a lifting of (o, B) to Q2
ES ) = (-1 (k= 1)1 (2m0) B gy (k,7,0) for k> 1
We have:

Rk
(38.1) Forkz1l, D*'dlog(cfs) = (PEW(r,2) ~ FEF(1,e2)) @ (it) :

(3.82)  log(l.bs]) = FEO(r,2) — EO(r, e2).
p:wwﬁ)%%o(%
DF2g EF(r )@ ( ) T k=3
(38.4) Let (o, 8) € (Q/E). Then:

(3.8.3)

(1) k> 1, k # 2, the modular form E ﬁ coincides with the function E ") defined
analytically above.

iy B2, = B - B

i) 10 gl = 5%, 0 (08) # 0,0,
{iv) The functions E( ! o ({2, 8) # (0,0)) and E? 33 are C*°-functions on H but not
holomorphic.

3.9. We next consider g-expansions. It is known that the pull back of an element of
Mp(X(N)) on § has a presentation

Y and™™ (. € Q)

nef,nz=l

(g = ?™nT/NY called g-expansion. We give g-expansions of Eisenstein series.
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For o ¢ QQ/Z, define ({a,s) and {* (e, 5) by

Cas)= 3 w7 (Clans)= Y@

nEQ,n>0 n=1

nmod T=c
Note (0, 5) = (*(0,8) = {(s).
Proposition 3.10. — Let k2 1 and o, B € Q/7Z

(1) Assume k # 2. Write
Eﬁf)j = Z ang”.
nEQrnz0
Then ayn, for n > 0 are given by
Do ann T = a8 s — k4 1)+ (~1) (-, s)C (s — k1)

nEQn>0
Inthe case k# 1, a0 =0 f a#0, and ag = (8,1 - k) if a = 0.
In the case k=1, ag = {{e,0) % o £ 0, and

1. . ‘
= (B0 = C(=8,0) F a=0,
(2) Write
B Y o
nel,n20
Then an forn > 0 are given by
D ann =l s (Bes — 1) + (=, )¢ (=B, 5 — 1) — 24(s)(s - 1).
neldn>0
We have ap =0 if £ 0, and ag = (3, -1} - {(=1) if o = 0,
(3) Here, we assume (o, 3) # (0,0} in the case k = 2. Write
K= Y w
n&(nz0
Then an, for n > 0 are given by
> et =Clas — k- 1)CNB,8) + (~1) C(~a, s — k+ 1)C(=5, 5).
neEQ,n>0
Inthe case k#1, ap = ({0, 1 — k).
In the case k=1, g9 = ({2, 0) if & # 0, and

— @0 =50 # a=0.

By FProp. 3.10 and by the “g-presentation” of g, g in 1.9 (note that the number
1/12 — a/2N + (1/23(a/N?) (0 €< a < N) which appeared in 1.8 coincides with
—{(a/N,—1)), we have
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Propaosition 3.11
(1) ) = R forany (0, € (@/2"
(2) dlog(ga,s) = —F('% in I'(X Ql X(N) Q(log(cusps )) for any (a,f8) €
(Q/Z)" ~ {(0,0)}.

4. Euler systems in the space of modular forms

4.1. For k € Z and a curve X over Q of the form G\X(N) with N > 3 and
G a subgroup of GL2(Z/N), we define the space My(X) (resp. Se(X)) of modu-
lar forms (resp. cusp forms) of weight & on X to be the G-fixed part of M (X(N))
(resp. Si{X(N})). (This definition makes sense since in the case N, N’ > 3 and
N | N, Mp{X(N)) (vesp. Se{X(N))) coincides witk the Gal(X (N / X (N))-fixed
part of M (X (IN')) (resp. Sk(X(N))).)

In the rest of this section, fix k = 2, M, N 2 1, such that M + N > 5.

4.2. We define slements
c,dzM,N(k,T', ’-‘"1) = M;G(XUVI, N))

which we call “zeta elements” or “zeta modular forms”, for integers r, v, ¢, d under
the following assumptions (4.2.1) (4.2.2).

r<k~1,1<r<k-1, atleastoneof r, ¥’ is k— 1.

(421) Itr=k~2and r' =k -1, then M 22

(4.2.2) {e,M)=1, (d,N})=1.
We also define elements

zpa ik, r’y € My(X (3, NY)

which we call also zeta elements, for integer », ¢ under the following assump-
tion (4.2.3).

(423) (nr') areasin (4.2.1), and {r,r') # (2,k~1),(k— 1,2), (k= 1,k — 2).
Under the assumption (4.2.3), we define 23, 5 (E, 7,7’} to be

U = MR N R B =k 1,
S NI R Yl St Y i A N LT
{In the case r = v’ = k — 1, these definitions are compatible becanse F( E(l6 )

Under the assumptions {4.2.1) and (4.2.2), we define eaza,n(k,r ) by puttmg e d
to the above definitions. That is, we define ., Azarn(k,r ') to be

(71)’? A (T _ 1) ]Mrkﬁr 2N—T‘ (k T') (?/N if :,J =k - 1

1/M0
v - ks gy k—r
(1) (k- 2) 7 MR ke dEél)/N i or=k— 1
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Here
I = A ER P h2 1, (e f) £ (0,0) i h=2),
L = B - hEﬁJCE (h21, h#2),
{2y =(2)
CEa,ﬁ —62 En: Eca o8

{c is an integer which is prime to the orders of a, ).
Under the assumptions (4.2.2) and (4.2.3), we hawve

az(br) = (& = (§0) ) (@ =8 (32)) - amnlerry o

where

-k ifrr=Ek-1,
(424) (uU):{(r—t—Q ko) ifr =k

(k—r',r) ifr=%—1.

Proposition4.3. — Let M', N 2 1 and assurne M | M', N | N'. Assume further that
prime(M) = prime(M’), prime(N) = prime(N").

Then the trace map

Mi(X (M, N')) — My(X (M, N))

sends caza no (b, m, ') (resp. zae e (kyr 7)) to cazaen(kor v’ (resp. zpr (ke mr’))
foranyr, v, ¢, d (resp. v, ') satisfying (4.2.1) and (4.2.2) (resp. (4.2.3)).

Proposition 4.4. — Let £ be o prime number which does not divide M. Then the trace
map
M (X (MENE)) — M (X{(M,N))

sends c,dZMZ,NE(k: r, 7"") to
(1 =T e ) 'Ek_l_zr) earnw(k,T.7)
in the case £ does not divide N, and to
(1 — Tr(g)( lé{s )* . gir) - c:‘dzi‘o’f,N(k: T T,)

in the case £ divides N, for any v, v, ¢, d satisfying (4.2.1), {4.2.2) and (cd, £} = 1,
Here T'(£) is the “dual Hecke operator” ezplained in 4.9 below. We have the result of
the same form for zarenelk, 7,7 and zpr n (k. v, v') for any r, v’ satisfying {(4.2.3).

The proofs of Prop. 4.3 and Prop. 4.4 will be given in 4.11-4.13.
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4.53. We describe how these zeta elements are related to zeta functions.
Let A: B — Y (M, N) be the universal elliptic curve, and define a local system !
on Y{M,N)(CT) by
M =RIN(Z).
Then H! is locally isomorphism to Z2, The cohomology group
H (Y/(M, N)(C), Sym§~*(1"))

will be Important for us. For any commutative ring A, let
(451)  VealY(M,N)) =H'(Y(M, N)(C), Symi2(1¢") @z A),

Vi a(X(M,N)) = B (X(M, N)(C), 5. SymE~3 (1) 2z A).

where j is the inclusion map ¥Y{(M, N) — X (M, N). We consider the operator-valued
zeta function
aunlhys) = > T{n)(Mr0) . nme
{r,2d)=1

{T"(n) is the dual Hecke operator explained in 4.9 below), acting on V(Y (M, N)).
(In the case k = 2, Zas y(k, s) coincides with Zyr,w{s) in 2.5.) This converges ab-
solutely when Re(s) > k. The function Zy n(k, s) has a presentation as an Euler
product whose Euler factor at a prime number £ is

* * -1
(L-T@En 4+ (9 STITE g (5 M) =1,

-1
( ~ T () e—a) if (6,M)=1 and £|N,
1if £ M.
The function Zys n(k, s) has an analytic continuation to the whole C as an operator-
valued meromorphic function in s and is holemorphic at s #k.
As Is reviewed in 4.10 below, we have the period map
peryy y My (X (M, N )Y — Vio(Y (M, N
As is explained in 4.7 below, we have special elements
du (k7)€ Vg (Y (M, N)) (1<j<k—1)

(The element 837,y € HH{Y (M, N)(C), Z) defined in 2.7 coincides with dar,w(2,1).)
Let o Vo z(Y(M,N)) = Vi g(Y (M, N)) be the map induced by the complex con-
jugation on Y (M, N){C) and on E(C}, and we denote the C-linear automorphism of
Ve,o(Y'(M, N)) induced by ¢ by the same letter o. For an element = of Vie (Y (3, NY),
let
1
== F A=)z}

The foilowmg Thm. 4.6, which relates zeta elements to zeta values Zyy vk, )
(1< r<k-—1),is deduced from the work of Shimura [Sh]. We give the proof of
Thm. 4.6 in §7.
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Theorem 4.6. — Assume prime( M) < prime(N). Then we have
(peras (e e,y 1) = Zag ol ry - (i) ar (e, o)
for any r, v satisfying (4.2.3) and for + = (=1)*"71, and

(peras wleazar (b 7)™ = Zug (i, r) - (2m0) 71 =

for any v, ', ¢, d sotisfying (4.2.1) and (4.2.2) and for & = (1)1, where
7= (= () = (3 )owwlr) -

with w, v as in 4.2

4.7. The definition of the special cohomology class SNk ) (I<i<k—1)isas
foilows.
We have canonical isomorphisms

HY (Y (M, N)(C), Symg *(H')) (= Vaz{¥ (M, N)))
& ) (X (M, N)(T), {cusps}, Syms2(H1))
& H,y (X (M, N)(C), {cusps}, SymE2(H, )

where Hy = Hom(H?, Z), the first iscmorphism is by Poincaré duality and the second
fsomorphism ccmes from the canonical isomorphism H' = H;. Here we used the
relative homology with coefficients which may be not a well known object. The
definition i3 explained below.

We define dpr (%, 7) € Viz(Y{M, N)) to be the image of

class(ip, @) € T (X {34, N)(C), {cusps}, Sym&~2(H, )
under the above composite isomorphism, where ¢ is the continuons map
(0,00) — X(M,N)(C); ¢(y) =v(y) for 0<y< oo,

which is a route from a cusp to a cusp, and « is the following element of
I{(0,00), 5~ M{Sym5™*(H,)). The stalk of ¢ *(F:) at y & (0,00) is identified
with H: (C/(Zyi + E),Z) = Zyi + Z. The sheaf ¢~ (H;) on (0,00) is & constant
sheaf of rank 2 with basis e1, e, where the stalk of e; {Tesp. e3) at y € (0, 00) is vi
(resp. 1) € Zyi + Z. We define

i—1 k—j—1
a=e ey 7.

It M', N > L and M | M/, N | N', the trace map Viz(Y (3’ ,N)} —
Vk,z(Y(ﬂ/L N)) sends 5Mf,Nf(k,j) to 554,N(k,j).

In the above, the relative homoelogy with coefficients is defined as follows. If X is a
topological space, C'is a closed subset of X, and F is a locally constant sheaf of finitely
generated Z-modules on 7 = X~ C, Hy, (X, C, F) is the cohomelogy in degree —m of
the complex BHom(RT(X, fiHom{F, Z}), Z), where j is the inclusion map [/ — X.
If we have a pair (p, &) of a continuous map ¢ : {0, 1] — X such that = (I} = (0,1)
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and an element o of I'({0, 1), w*F), we have class(p, a) € H (X, C, F) to be the image
of a under the composition

F(((]:l)aw*j:) ng([071J7{051}1(P*F) - HI(X: C,.’F)

4.8. We give a preliminary to introduce Iecke operators.
Let A 2 1. We define isomorphisms

wh = {02), t Mi(X{M(A), N)) =5 My, (X (M, N(4)))
(pa), = (02)" - Mu(X{M,N{A))) = M(X(M(4),N))
and homomorphisms
wh = (pa), Ve (Y (M (A), N)) = Vi (Y (M, N(4)))
(pa), = (wa)" Vi (Y (M, N(A))) = Viz (Y (M(4), N)).

Here X{M,N(A)) {(resp. X(M(A),N}) denotes the smooth compactification
of the curve Y(M,N(A)) (resp. Y(M({A},N)) in 2.8. Viz(Y(M(A),N)) and
Ve z(Y{M, N(A))) are defined in the evident way.

Let E; be the universal elliptie curve over ¥'{M, N(A)}) and let B> be the universal
elliptic curve over Y{M{A), N). Then we have canonical homomorphism

(4.8.1) By — oh(Ba), Ez— (p3%) (En)

which are isogenies of degree A. Hence the pull back by ¢4 followed by the pull back
by By — @*(Fq) (resp. the push down by By — (goffEl followed by the push down
by ;") gives homomorphisms

Mu(X(M{A),N)) — My (X(M, N(A)))
and
Vez(Y{(M(A), N)) — Vg (Y (M, N(A)))

which we denote by 7% (resp. (¢3'),). We have ¢} = (px"),. Similarly, the pull
back by @, followed by the pull back by By — (¢0a")"(Ey) (resp. the push down by
E, — % By followed by the push down by wa) gives homomorphisms

My (X (M, N{A))) ~— Mp(X(M(A),N})
and
Viz (Y (M, N(4))) — Viz(Y (M(A), N))

which we denote by (¢37)" (resp. (wa),). We have (Lp;l)* = {ip4),. Here for the pull
back and push down for on the spaces M by

By — 3(By) and  Fy — (p3") (E),
we use the definitions (3.1.2) of My, not the definition (3.1.1) of M.
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‘We have also .
@ho(pal) = (pa"), 0 (pa), = A7
(0z') o = (pa). o (w3h). = 472

We have
(48.2) (@af)(r) = AL f(Ar) forany [ € Mp(X(M{4), V),
(483) ((pz!) " F)(r) = A7 f(A7 ) for amy [ € Mi{X (M, N(4)}).

4.9. The Hecke operators T'(n) and the dual Hecke operators 7"(n}) on My (X (M, N})
and on Vi z(Y{M, N)) are defined for integers n > 1 which are prime to M as follows.
(In the case k = 2, these operators on Va z(Y (M, N)) were already given in 2.9
First, T{1) =7"(1) = L.
Next we give the definitions of T'(¢) and T'(£) for a prime number ¢ which does
not divide M. Let pr: X (M, N(£)) — X(M,N) and pr' : X(M(£),N) — X(M,N)
be the canonical projections. We define

T(8) = (pr')s o (9, ) o pr”, T'(8) =proogiopr’
If £ does not divide N, we have T'{#) = T(£){} J}g)*.

In the case n is & power # (e > 0} of a prime number £ which does not divide M,
T(n) and T'(n) are defined as follows. K 2| N, T(£%) = T(&)°, T'{ee) =T{4)°. H £
does not divide N, T{¢*) and T'{£?) are defined inductively, by

T = TEOTE) + (1 1)) - £,
G B G s B T S Wl (S R A

Finally, for n = ], £ (e(£) > 0) where £ ranges over all prime numbers which

do not divide M, T'{n), T'(n) are defined by

T(n) = HT(_{Z*’—(@)): T.'(n) _ ]:[Tf(ee(f))‘
¢ £

For any m, n 3> 1 which are prime to M, and for any ¢ € (Z/M)", b & (Z/NY*,
the operators T'(m), T{n), T'(m), T'(n), (2 93" commute with each other.
The similar definition gives Hecke operators on the compact support cohomology
Eroup
Vi,a,oY (M, V) = BL(Y (M, N)(C), Symg *(H') @z 4)
(A a commutative ring). In the Poincaré duality
Veg(Y (M, N)) X VegoY (M, N)) — Q

induced by the canonical pairing H!' x H* — Z, T{n) and T'(n) are transposes of
each other.
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The operators T(n) ({n, M) = 1) on Mp(X(M,N)) are described also by us-
ing g-expansions. Let ¢ be a prime number which does not divide M. Let f €
Mp(X{M,N))@C. Then the pull back of f on © has the form

f= Z and™* {a, € C).

neZ,nzt
Write
T(ﬂ)f - Z bnqn/M'
neZ,nz0

Then:
(4.9.1) by = ane if £ divides N or if £ does not divide n.
(4.9.2) Assumne { does not divide N and £ divides n, and assume (léf g)*f =e(f)f
" for some £() € C*. Then by, = ang -+ e(£)8F a, .

In the case M 2 2, the definitions of the operators T'(n) and TV(n) in this paper
differ from the definitions in some literatures. In the case A = N, the operators
Tw) (29 = T'(n)(32)" ({n, N) = 1) in our notation are the Hecke operators in
Deligne [Del]. The advantages and the disadvantages of the operators T(n), T"(n),
Tw)(39)", T ((n, M) = 1) are:

(49.8) Inthe case M = N, T(n)(23)" and T'n)(}2)" commute with the action
of GLo(Z/N). But they do not preserve the direct summands of HY (Y (M, N}YC), Z)
corresponding to connected components of ¥ (M, N){(C).

(4.94) T(n) and T'(n) preserve the direct summands of H(Y (M, N)(C), Z) corre-
sponding to connected components. But in the case M = N, they do not commute
with the action of GLo{Z/N).

4,10, We review the definition of the period map

My X{M,N}) — Vie(Y (M, N)).
We also review the period map

SUX(M,N)) — VoY (M, N))
which we will use in §7. We denote X = X (M N}, ¥V =Y (M,N). Let j: Y (C) —
X(C) be the inclusion map. Let A : E — X be the smooth Néron model of the
universal elliptic curve A : F — Y. We denote by { )*” the analytic cbjects associated
to algebraic objects. For example, 0% denotes the sheaf of holomorphic functions on
X{(C). We have a homomorphism
(4.10.1) coLie(B)" — OF @z .(H")
on X (C), as the connecting homomorphism of the exact sequence

0— (T oy —ox L@y, )" —0
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on E(C). (4.10.1) induces

®(k_2))€|-ﬂ

(4.10.2) (coLie(E) 3 ®z j (SymET2(HY).

Omn the other hand, consider the exact sequence

4 — 7C — O3 (—cusps) 4, (Q%UQ)&n — 0
on X (€} where O3 (—cusps) denates the subsheaf of (0% consisting of functions which
have zero at all cusps. This exact sequence tensored with 7, Sym%’z(’}-il) gives the
connecting maps -

(1.10.3) HO(X(T}, (0 )™ @z j. Sym* (1))
— HY(X(C), i Sym"*(H")) 2 C = Vi c.o(Y),

(4.104) H°(Y(T), (Qhq)™" @z Sym* (K1)
e BHY(C), Sym* U H ) @z C = Vi (V).

The period maps are defined as the composite maps

Se(X (M, N)) = (X, (@ o) B0y coLie(E)** )
4.10.2 ar . o —
10D 10X (©), ()™ @2 4 Sy () @2 €

)

My(X{M,N)) € B(Y, (2 0) @0y coLie(E}¥# )

4,106.2 an —
(19D | o), (0 o)™ @5 Symd2 (1) ©2.C

and VeclY).

4.11. We prove Prop. 4.3

It is enough to prove the case M’ = M and the case N’ = N. Since hoth cases are
proved similarly, we give only the proof of the case N = N’. In this case, our task is to
prove that if M | M’ and prime(M} = prime(M”), the trace map My (¥ (M’, N}) —

Mu(Y (M, N)) (b > 1) sends (M) 2F{}],.  to MP=2F() | (we assume M > 2 in

the cage b = 2) and (A/f’]_hES})W:D to M‘hEi'}?wlo {in the case h = 2, we replace E
by E). These are proved by the same arguments as in 2.11 (we use Lemma 3.7 in
place of Lemima 1.7.)

We give a preliminary lemma for the proof of prop. 4.4.

Lemma 4.12. — Let (0, 5) € (Q/Z)%, and let A2 1, h 2 1. Then:

(1) @Z(Eg:%) =3 .0caz A*IEC(:{)B,. Here in the case h =2, we replace B by E.
AR =3
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(2} @Z(F‘ffg) = Zﬁ’e@/z Ahﬂﬁﬁg,. Here in the case b = 2, we assume
Ag'=g
(o, B) # (0,0).

Proof. — We prove (1}. From the analytic descriptions of Fisenstein series in 3.8, we
obtain
EX(Ar) =" 3" EUL(r) (res).
B'eQ/E
Ag'=0
(1) follows from this and from (4.8.2). (2} follows from (1). O

4.13. We prove Prop.4.4. Since the proof for zeta elements with ¢, d is similar to
that without ¢, d, we give here only the proof for zeta elements without ¢, 4. Let
1< j<k—1. Assume that j # 2 and that M > 2 in the case § = k2 (resp. Assume
that 7 # 2, j # & — 2). By 4.12 and by similar arguments as in 2.13, we have that the
trace map My{M{ N&) — My{X (M2, N)} sends

(e . - ,
Fl/MjE,O 'Eé,E/NE (resp. Eg/mo E,gf%/m)

{0
w T T
{resp. (E’“‘ng;E) —ESDzE(k‘j ) EéJ%/NE)

Here « is the unique element of %Z/Z such that fo = 1/M. The trace map
Me(X (M, N8) — My (X(M,N(£))) sends the element (1) to

) (£j+2v~ﬂcFU€—jJ gtk *F(JIc 5| ) ‘E‘PEESJ{/N
{resp. (fk']ESE)D — Lpg E(k =t )'E‘PEE(J;L/N)
in the case £ | NV, and to
(2,) (EjJr?*kF(k—j) . €j+2—k(p*F(k*j) ) (ﬂwEEé-?l[N . E(()J,BJ
lo—
(resp. (£*~ 3E$MJO — Ly E( ) - (B Ea 1/ Eéfp)a)

in the case {#, N) = 1 where § denotes the unique element of %TZ/ Z such that £53 =
1/N. Concerning the trace map pr, : Mg (X(M',N(E))) — Mp(X(M,N)) (h 2 1),
we have

{4.13.1) In the case £ | N, we have for h 2
EPY*@EE:ghl)/N f?hEo /N
(we replace B by E® in the case h = 2).
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(4.13.2) In the case £ does not divide N, we have for h 2 1
ebpr or B = 2R 2F)
fpr, oy B, ( EhEI/M ot EE‘(I‘

(we replace E by F in the case b = 2),

A h
Epr*(ngé 1)/N = ﬂhE'( 0.1 /N +£E( )
{we replace E by E in the case h = 2},

(These (4.13.1) and (4.13.2) are proved by the arguments similar to the proofs
of (2.13.1) and (2.13.2).) By (4.8.2), we have

(4.13.3) wi(fg) = toy(f) - wilg)

for £ € Mu(X(M(£),N)), g € My(X(M(£),N)) (h, & > 1). By using (4.13.1)-
(4.13.3), we obtain the following: in the case ¢ | N, the trace map M; (X (M, N(£))) —
M (X (M, N)) sends the element (2) to

— k
£;+2 kF(;SMJ; épr, (PEE I/Nigﬁ-z ke (4{;)( ( 7} E(Jl N)

(17 G-t R (v
(ZM"N(R’, g k- 1) - f_jTr(g)( 162 ?)*ZM,N(k, k— 1,_]'))

(resp. LFIESD iprpiEY) - 0T (OH(ES Egi)

= (1) (k=2 (& (Ney
{mar (o = 1,5) = €T (4 9) anw bk — 1,9) )

In the case ¢ does not divide N, the trace map My (X (M, N(£))) — Mzp(X (M, N))
sends the element (2') to

g ’"F(jcrg EPY*WE(E /N — G, (k 7 ESJ%/N)
— e+ Rl EO,)B (2 Fpr ot B - By
= (=1 - (j = 1) (MY TR (Ve
(zarvl, ot = 1) — £9T (012 0) 2y (o = 1)

+ (1[/)5 1(/3£)* L 12 'ZM,N(k,j,k _ 1))
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{resp. f’k‘JEf;ﬂjo EPY*SD;Eéﬁ/N ~£T'(8) (E(kﬂ, EéJi/N)

— (+ 1) B0 B 4 (pr i ESS) - BY)
= (=1 (k—2)l (MO (Ng)
(2aa,n (R k= 1,5) = O FTO (8 0) zag (ke ke — 1, 5)
+(% o) O (k= 1,5))

This proves Prop. 4.4.

5. Euler systems on X1(N) @ Q(¢n)-
Let
Xi(N) = X(L,N), T1(N)=Y(1,N).
'T'he total constant fields of these curves are Q.

We will always identify X1(N) ®@Q(¢m) (m 2 1) with the quotient of X (L) {m | L,
N | L, L > 3) by the action of the group

a b
{(c )E‘GL‘E(Z/L) c=0 d=1mod N, ad- bc—lmodm}

Hence ¥1(N) ® Q({r) 18 regarded as a quetient of Y(m, L) for any L > 1 such that
m|L, N|L
Fix Nwm>i

In this section, we define zeta elements in Ko (¥1(N) @ Q((n))®Q and zeta elements
i Mi(X1(N})) ® Q{Gr) (k2 2).
5.1. Let £ and 5 be as in the following (5.1.1).

(5.1.1) Fither £ is o symbol a{A) where o, A€ Z, A> 1 and § is a TOT-ernpLy
finite set of primes containing prime(mA), or £ is an element of SIa(Z) and S is
nom-empty finile set of prime numbers containing prime(mV).

We define zeta elements

zi,mm (6, 5 e K (Vi (M) @ Qlém)) @ Q
as follows.

First we define #; v m(€,9) in the case £ is a symbol a(A) for o, A € 7, A 2 1
Take M = 1, L > 4 such that

mAlM, N|L, M|L, prime(M)=S5, prime(L)= 5t prime(N).
As is explained below, there exists a unique morphism of schemes

(5.1.2) Y{(M, L) — Y1(N) © Q(Gm)
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which is compatible with $ — $; 7 A7 (v +a). Let
tmagay 1 KoY (M, L}) — Ka(¥i(N) @ Q)
be the norm map associated to (3.1.2}. We define
#1,8,m{0(A), 8) = tma(ay(2ar,1)-

By Prop. 2.3, 21, n,m(a(4), 5) is independent of the choices of M, L.

The morphism (5.1.2) is obtained as the composition

la —1

vioe, 2y -BE v (aa, 1) — Yomta), £ A ¥, L) — V() © Q160
where (§ %) denotes the automorphism of Y(M , I} induced by the automorphism

F8) of Y(L).

As we will see in 5.10, 23 ¥ m{a(A), S) does not change when we replace a(A) by
a'(A} for any integer o’ such that a = o’ mod A.

Next we define z;_y m(£, §) in the case £ € SLo(Z). Take L > 3 such that

m| L, N|L, prime(L)=J5.

We define z1 v (£, S) to be the image of £*(z7, 1) under the norm map Ks(Y' (L)) —
Ka(Y, (V) @ Q(Cm)) associated to the canonical projection (L) — Y1 (V) & Q(Cn).
By Prop. 2.3, z1 v (€, 9) is independent of the choice of L.

We have also the “with ¢, d-version® of the above zeta elements, which belong to
Ko (Vi {N)@Q($m)) without ®Q, by replacing 2,7,z in the above definitions by o 4 2m, L.
But we will not discuss about these elements, for we will not use them in this paper.
Zeta elements with £ = a(A4) and zeta elements with § € SLa(Z) will play different
roles; see the end of 8.1.

5.2, Let & » 2. Tet & § be as in (5.1.1). We define the following elements of
Mip(X1(N) ® QGm)) = M{X1(N) @ Q({m);
c,dzl,N,m(k:TJ Tf: £.5)
for integers r, 7', ¢, d satistying {5.2.1) and (5.2.2) below, and elements
2w mlk, 6, 8)
for integers r, v’ satisfying (5.2.3) below.
(.2) 1<r<k-1, 1< k-1, atleastoneofr, risk -1
(5.2.2) prime(cd)NS =, and (d,N)=1.
(6.2.3) randr’ are asin (5.2.1) and satisfy
(re) £ (2,k—1), (k—1,2), (B—1,k—2).
First we define these elements in the case £ = a(A).
Take M = 1, L = 4 such that
mA|M, N|L, M|L, prime(M)=25, prime{L)= 5 prime(N).
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Let
tmaid) : Mp(X (M, L)) — Mp(X1(N) © Q(Cm})
be the composite map

(5

{8%), Mi(X (M, L))

trace
—

M (X{M, L))

trace

(@E ) Mk(X(m,L(A))) T Me( X (N) @ Q(Gn)).

Mp(X(m(A), L))
We define
c,dzl,N,m(k: T T’a a‘(A)a S) = tm,a(A) (c,dzm,L (ka I T’)L
for r, 7', ¢, d as in (5.2.1) (5.2.2), and
Zl,N,m(.lﬁ, T T’, a{A),5) = tm,a(A)(Zm,L(k, T, T")).

for v, v as in {5.2.3). By Prop. 4.3, these elements are independent of the choices of
M, L, as above.

As we will see in 5.10, these zeta elements do not change if we replace a{A) by
a’(A4) for any integer a’ such that a = ¢’ mod A.

Next we define the zeta elements in the case £ € SLe(Z}). Take L 2 3 such that

m|L, N|L, prime(L)=25.

We define gz nm(k,r.r',£,8) for r, v, ¢, d as in (5.2.1) {5.2.2) (resp.
21,8 mk, ' €,8) for v, v as in (5.2.3)) to be the image of E{oazr k)
(resp. &*{=zr,z(k, v r"))) under the trace map

Mi(X (L)) — Mg(X1(N) @ Q({m))-

By Prap. 4.3, these elements are independent of the choice of L as above.

Let N 2 1 be a multiple of N. In the case £ € SLy(Z), assume prime(N') C £.
Then the trace map

Me(X3(N') © Q(Gn)) — Mi(X1 (V) @ Q)

sends oz nm (ko €,5) with (4N} = 1 (resp. z1,nm(k, 77,8, 5)) to
c,dzl,N,m(ks T ?JJ E; S) (I'ESP~ zl.N,m(k: 7y TJ: 5: S))
Proposition 5.3. — Let £ and S be as in (5.1.1), let m’ 2 1, and let 5’ be o fintte sef
of prime numbers such that S U prime(m’) C §'.

{1y The norm map
KZ(YI(N') & Q(C’m’)) & Q B K2(Y1(N) & Q(C‘m)) & Q

sends 21,8 m {8, 5') to

[ -7 + 28,2 -E)) c 2y, mm(€, ),
fes5i=3
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where oz € Gal(Q(Gn)/Q); aellm) = &, A8 denotes (G 1?3)* in the case  does
not divide N, and A'(£) =0 in the case £ divides N.

(2) Letk =2, andletr, v, ¢, d be as in (5.2.1) (5.2.2}, and assume prime(cd)NS’ =
@, Then the trace maop

Myp(X1(N)® Q) — Mip{X1(N) @ Qm))

sends o g2 Nm(fr, 7, £,87) to

[ Q-T@ort e+ Mo, ® 517 cammlbor ' £,8)
teg—8
where A'{€) denotes (§ 1%)* in the case £ does not divide N, and A/(f) = 0 in the
case ¢ divides N. We have the result of the same form for zinm{k,m17, € 5" and
21 N m(k,m, 17 €, 5) for any integers v, v satisfying (5.2.3).

For the proof, see 5.7.

5.4. In 4.5, we defined the space Vi g(Y1(&)) (k > 2) in the case N 2 4. We extend
the definition including the cases N = 1, 2, 3. In general, for a curve ¥ of the form
G\Y(N) with N > 3 and G a subgroup of GLo(Z/N}, we define the space Via(Y) to
be the G-fixed part of Vi g{¥ (V). (This definition makes sense since in the case N,
N' 2 3and N | N, Vig(Y(N)) coincides with the Gal{Y (N')/Y{IN})fixed part of
Vio(Y(N).) In the case k = 2, ¥ o(Y) is simply H'(¥(C), Q). For a commutative
ring A4 over @, let
Vealt') = Vio(Y) @g 4.

We used dual Hecke operasors in 5.3, but in fact we have explained them in §2, 84
only in the case N 2 4. Including the cases N = 1, 2, 3, the operators T(n}, T(n)
(n > 1) on My(X1(N)) (k € Z), Vig (Y2 (V) (k 2 2), Ka(Yi (V) ® K}) @Q for a field
K = Q are defined as fellows. Take M, L 2 1, such that M + L 2 5, (n,M) =1,
N|L,M|L,I| MN. Then

XM, L) — X(1,N) = X1 (N)
is a Glalois covering allowing ramification. The operators T(n)(59) and T'(n}{(*/*?)
on Mi(X{(M,L)), Veo{Y (M, L)), KoY (M, L) ® K) ® Q are invariant under the
action of Gal(X{M, L)/ X1(N)), and hence induce operators T'(n) and T"(n] on the
Gal(X{M, L)/ X, (N))-invariant parts Me(X1(N)}, Vig(Y1(V)), Ko((N)@ K)@Q,
respectively. These last operators T(n) and T"(n) are independent of the choices of
M, L. If N = 4, these T(n), T"(n) coincide with the ones given in §2 and §4.
For a subfield K of C, the regulater map
reg, i - Ka(Vi(N) @ K)®Q — YV (N)(T), R -4)
and the period map
pery - Mu(X0(V)) @ K — Vie(%i(V)) (> 2)
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are defined also for any N 2 1; They are induced from those of ¥1(L), NI L, L 2 4.
They commute with T'(n), T'(n) (n > 1).

5.5. We define special elements
jl,N(k1j1 G'(A))u 51,N(k1j1 05) € V‘“,Q(YI(N))

(l<jgk~1,a0,AcZ A2 1, acSLy(Z)).
First we define 6y v(k,7,a(4)). Take L = 4 such that N | L. Consider the conti-
nuous map

Paay + (0,00) — YI(L)C); yr— v(A7 (yi+a)).
Then wgray is & route from a cusp to a cusp. The stalk of m;(lA)(Hl)-at y &
{0,00) is identified with Z . A=1(yi + a) + 7. Let &1 (resp. S2) be the element of
I'((0, o0), go;‘(i,_)(Hl)) whose stalk at y € (0,00) is i (resp. 1) € Z- A~ Yyi +a) + 7.
Then &1 w{k, j, a{A)}) is defined to be the image of the class(ip,(4), = ,@é"’j‘l) under

Hi (X, {L)(C), {cusps}, Symy " (H1)) = H'(X1(L)(C), SymE~2 (1))
trace

Ve (Y1(N)).

Then &1 (%, 7, a(A)} is independent of the choice of L. In particular, & 5{2,1,a(4)) €
HY (¥ (VN){C},Q) is the fmage of the class of the route from & cusp to a cusp
(0,00) = Yi(N),(C); ¥ v{A(yi + ) in Hy(X1(N)(C), {cusps}, Z).

For I > 4 such that A | L, N | L, 6 w(k, §,a(A)) coincides with the image of
da.(k, 7)€ Vieg(Y(A, L)) under the composite map

(69).

Vig(Y (4, 1)) Vio(Y(A, L) trace

VoV (1A, 2) AL v, o (v, 1Y) EE2 v o v (v)).

Next we define & »(k, §, @) for o € SLo(Z). Take L > 3 such that N | L. We define
d1,w(k, 7, @) to be the image of «*(6z,2.{k. 7)) under the trace map Vig(Y (L)} —
Vi,g(Y1(N)). Then 8; (k. 7, @) is independent of the choice of L.

In the following Thm. 5.6, for & 2 2 and a finite set S of prime numbers such that
prime(m) C S, and for a character y : (Z/m)™ — CX, let

Zi,m,5(ky x,8) = Z x ()T (n)n=°
(r,5)=1

which acts on Vi o(¥1(V)), where (n,5) = 1 means that n ranges over all positive
integers such that prime(n) N9 = @. Let

75 € Gal(Q(&rn)/Q) (b € (2/m)™)

be the element which sends G, to %
Asin §4, let 2% = (1/2){1 £ )(z) for x € Vi o{Y1(N)).
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Theorem 5.6. — Let £ and 8 be as in (5.1.1) and let x : (Z/m)™ — C* be o character.
(1) Let = = —x{—1}). Then we have
Z x(byreg, n (7s(z1, vm(€,9))) = Sl,i_)U})S_lZLN,S(ZX,S) 2mi -GN (2, 1,8)F
bE(Z/m)*
(2) Let k = 2. Then

3
S x(yperyw (oslzwmE 8 8))
bE(Z/m)*

= Zrw st r) - 2riF T (6
for any integers v, v satisfying (5.2.3) and for & = (fl}k_’"_lx(—l). Next letr, 7/,

¢, d be integers satisfying (5.2.1) (5.2.2). Fn the case £ € SLa(Z}, assume c =d =
Tmed N. Let & = (—1)" 7" "Tx(=1) and let w, v € Z be as in §.2. Then

Z X{b) perl,N (gb(c,dzl,N,m(ks r ,r,f: f) S)))i = ZI,N,S(k} X T} ' (QWi)k_r—l ) /Y:k
be(Z/m)™
where
v = Ed5 (kv alA)) — ()6 vk, s ac(A))
—Adxd) () Sunle ! fafd (A))

— c*d¥¥(cd) - (léd g)*él,N(k:TJ: “acfd’ (A))

in the case & = a(A), where “e/d” for e € Z means any integer such that d- “e/d’ =
e mod N, and
v = (¢ = Ex(NE — x(d)oLn kv E)
in the case £ € SLa(Z).
5.7. Prop. 5.3 is deduced from the propositions 2.3, 2.4, 4.3, 4.4 and Thm. 5.6 is

deduced from the theorems 2.5, 4.8, by the following (5.7.1)—(5.7.3). {We use {5.7.1)
and (5.7.2) (resp. (5.7.1) and (5.7.3)) in the case £ = a(A) (resp. £ € SLa(Z)).)

(57.1)  On Ka(Vi(N) ®@ Q6m)), Mu(X(N) 9 Q) (B € Z), and Vieo(Y1(N)®
Q{&m)) (k2 2), we have

b 0\
(O 1) =ay for b€ (Z/m)".
{(5.7.2) LetacZ, A, Mz1,Lz4 mA|M, N|L, M|L. Let

tma(ay  Ka(Y (M, L)) — Ko(V1(V) @ Q(m))

(resp.  Imaray s Me(X (M, L)) — M (Y1 (N} @ Q(Cm}
resp. tumaray - Veo(Y (M, L)) — Vig(Y1(V)) ® Q(Gn))

SOCIETE MATHEMATIQUE DE FRANCE 2004



158 K. KaTO

be the map defined in 5.1 (resp. defined in 5.2, resp. defined in the same way as t, 5(a)
for My, in 5.2). Then we have

tman(a) @ T(0) =T(N) 0t ara), tmoaga) © T'(0) = T(n) 0 tm an(4)
for any n = 1 such that (n, M) =1, and

w 0\ fu 0}
tm,tw(A)O 0w = 0 v Otm,au(A)

for any integers u, v such that (u, M) =1, (v,L) = 1. In particular, T"(n)(léﬂ El')*
mzl, (n,M)=1)and (32) (v Z, {v,L} = 1) commute with tm 4(4)-

(5.7.3) LetL = 3. Then forn 2 1 such that (n, L) = 1, the opemtorT’(n)(I/” 0)
T(n}{(§ 1jn) on Ka(Y(L)) (resp. Mu(X (L)), resp. Vig(Y(L))) commutes with the
action of GLa{Z/L).

The proofs of (5.7.1)—(5.7.3) are easy and hence omitted.
We give expiicit presentations of the zeta elements of this section in some special
cases.

Proposition 5.8. — Lei a € Z, A > 1, and assume
prime{A) C prime(m)}, N 24, md]|N,
Let § = prime({m).

() 210 (0(4), 8) = { TL, 61/ 90,1/ )
where = ranges over all elements of Q/Z such that mz = —a/A.

(2} Let k > 2. Assume
prime{4} C prime(m), N 24, mA|N, S=prime{m).
Then jor integersr, v, ¢, d as in (5.2.1) (5.2.2) (resp. for integersr, ' as in (8.2.3)},
e.d 21, 8,m(k, v a(A}, 8) (resp. z w(k, 7,7’ a(A), §)) is equal to
AT L = D AN TS SR 0B

T

fresp. AT 7L (=1 (r - 1) mET AN Z Smri STI)/N)

ifr'=k—1, and to

A e R S BT B
fresp. AT (1) (k- e e S EE )

ifr =k — 1, where = rangzs over ol elements of Q/Z such that mz = —afA.
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Proof — Concerning (2), the proof for zeta elements with c,d is similar to that
without ¢,d. So we give the proof of (2) for zeta elements without ¢, 4.

By the arguments as in the proof of Prop. 2.3 (resp. 4.3), we can proceed as follows.
The element

{91/ma0 901w} € Ka(Y(md, N)) @ Q
(resp. (D7) o - B € MulX(md, N)
where () =For Fand 1< i<k —1)
is sent to
{31/ma,—amasGor/n} € Ka(Y(md, N)}®Q
(resp. (!)ﬁgﬂﬁa/m.ﬁl E JI/N € My(X{mA, N)})

under (}%), = (}73*)", and then to

{Hgm,%/m,ga,w} & Ky{(Y (m(4), N)) 8 Q

{Tesp. Z( )ffw}m Eéfz/N € My(X(m(A), N)})

x

. by norm {resp. trace), where  ranges over all elements of (J/Z such that Az = 1/m.

By using 2.12 and then 2.7 (2) (resp. 4.12 and then 4.7 (2}), we see that this element
is sent by {p37), = ¢% 0

{o1jmmapma [[ 90 } € KalY (m, N(4))) 8 Q

(resp. A (O00) L ma D By € Mi(X (m, N(A))
¥

(s=0if () = F,and s =k —j — 1if (!} = )

where y ranges over all elements of Q/Z such that Ay = 1/N. By using 2.7 (2)
(resp. 4.7 (2)), we see that that this element is sent by norm (resp. trace) to
{91 /my—a/ma, 9o,1/N } € Ka(Y(m, N)) @ Q
{resp. A- (!)ggjxla/mA E Jl/N € Mi(X(m,N))
(t=jif () =F,and t =k—1if (!} = E)).
This element is sent by norm {resp. trace) to

{Hgl/mm:gO v} €K(Vi(N) @ Q(¢n)) ®Q
(resp. A®- Z(' 1/mm' Ol/N € Mi(X3(N) @ Qm)) )-

where  ranges over all elements of /% such that mz = —A/a. This proves 5.8 (1)
(resp. 5.8 (2) for zeta elements without e, d). 1
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Remark 5.9. ~ Let & 2 2, let £, 5 be as in (5.2.1) and assume & = a(A4). Then
Prop. 5.8 shows that the zeta element . gz v m{k, 7,7/, €, S) for v, r', ¢, d asin (5.2.1)
(5.2.2) (resp. 21 Nm(k,,7",6,8) for v, v’ as in (5.2.3)) is defined also as follows
avoiding the strange map tm, .4). Take M 2 4 such that prime{M) = 8, and let
m’ = mM, N' = AmMN. Then this zeta clement is the image of the zeta element
cazL o (B’ €8 (resp. 2w e (K, 7, 7', £, 5)) under the trace map
Mi(X1(N') @ QGn)) — Mi(X.L (V) @ QGm)),

and the latter zeta element is given by Prop. 5.8 since

prime{A) C prime{m’), N' 24, m'A[ N, § = prime(m’).

A similar remark works for elements 21 v m(a{A}, §) in K2 © Q.
By Prop. 5.8 and by Rem. 5.9, we have

Corollary 5.10. — Let o, A€ Z, A 2 1, and let £ = a{A). Then the zeta elements
in 5.1 {resp. 5.2) including the symbol & do not change when we replace £ by a'{A)
for any integer o/ such that @’ = o mod A, and they do not change (resp. they are
multiplied by b 1) when we replace £ by ab(Ab) for o positive integer b.

6. Projections to eigen cusp forms
In this section, we consider zeta elements associated to each newform.

Fixk22, N1

6.1. We fix a normalized newform ([AL], [De2])
F=Y ang" € S{X1(N) ®C

2l
of weight & and of level N. We have
a] — 1
T(n)f =anf, T'In)f =@.f, forany n> 1

6.2. The zeta function

L{f, s} = Z anm*

nzl
can be written in the form of the Euler product

[T — et +e(pyes—1-257"
£

where £ ranges over all prime numbers and

g {Z/NY" —s C¥
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is a homomorphism characterized by

0 d

(If £ divides N, (¢) means 0.)
For me = 1 and for a finite set S of prime numbers such that prime{m) ¢ 5, and
for a character x : (Z/m)* — C%, let

Lg(fix.s)= > anx{nin™

(n,8)=1

= H (1—amx (&) + e(ﬂ)xz(g)gk—l—zs)—l
£2S

(l/d 0) F=eld)f forany de(Z/N)*.

These zeta functions converge absolutely when Re(s) > (k& +1)/2, and are extended
as holomorphic functions to the whole s-plane.

6.3. Let

F=0Qa,; nzl)cC
Then F is a finite extension of @ and is stable under the complex conjugation. The
above £ has values in F,

We will define a quotient Q-vector space S{f) of Mp{X1{N)) and a quotient Q-
vector space Va( f) of Vi o(Y1{N)}, corresponding to /. These spaces will have struc-
tures of F-linear spaces, and dimp{S(f)} = 1, dimz{V#(f)) = 2. In the case k = 2,
we will define a quotient Q-vector space Kz(f, K) of K2 (YV1(V}® K) @ Q for a field
K 7 @, which also has a structure of an F-linear space.

Let ma 2 1 and let £, S be as in {5.1.1). For integers r, 7', ¢, d satisfying (5.2.1)
{5.2.2) (vesp. integers r, r’ satisfying (5.2.3)) we define the zeta element

catm(for,r €,8) (resp. zm(f,r 7,6, 8)) € 5(f) @ QlGn)

as the image of the element gz nm(k 7,1, ¢8) (tesp. z1,nmik £, 5)) of
Mu(X1(N)) @ Q(4n). In the case k = 2, we define the zeta element

Zm(f, f, S) S KZ(f: @(gm))

as the tmage of 21 n m(, 5).

We define S{f) to be the quotient of Mg (X (N)) ®g F by the F-submodule gen-
erated by the images of the operators T'(n) ® 1 — 1@ a, for all n 2 1. Hence as a
Q-vector space, S{f) is & quotient of Mz (X1{V)). Furthermore, 5(f) is a one dimen-
sional F-vector space, and S{f) @7 C is generated as a C-vector space by the image
of f under the canonical map S;{X,1(N)} ®g C — S{f) @7 C.

On S(f), T(n) acts by an and T7(n) acts by G

We define Vr(f) to be the quotient of Vi #(¥1{I)} by the F-submodule generated
by the images of T(n) ® 1 — 1@ ay, for all n > 1. As a Q-vector space, Vr(f) s a
quotient of ¥, o{¥1(¥)). On Ve (f), T(n) acts by an and T'(n) acts by &n.
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For a commutative ring A over F, define

Valf) =Ve(f)@r A

The complex conjugation » on Vi o(Y1(N)) induces an A-linear map ¢ @ Va(f) —
Va(f). Hence we obtaired an A-linear action of Gai(C/R) on Va(f}.
We have

dimp{(Vr(f)} =2, dimp{Vp(f)*)=dimes{(Vr{f) ) =1
where ( ¥ means the part on which & acts as +1, respectively.

The period map per; y : Mp(X:{N)) — Vi c(Y1(V)) induces an F-linear map

verg : S{f) — Velf)
which we call the period map of f.

Forlgjgk—1andforé =a(d)witha € Z, A 2 1 (resp. for £ € SLy(Z)), let
be the image of &1 n(%, 7, £).

In the case k = 2, we define Ku(f, K) for a field K > @, to be the quotient of
K2(¥1(N)@ K)@z F by the F-submodule generated by the images of T(n)@1~1®ay
and T'(n) ® 1 — 1 ® @, for all n > 1. As a Q-vector space, Ko(f, K} is a quotient of
Ko(Vi{N)® K) @ Q. Oun Ka(f, K), T{n) acts by a, and T'(n) acts by Gr. In the
case K C C, the regulator map reg; y : Ka(Yi(N) @ K) — Vi e(Y1(N)) induces an
F-linear map

regy : Ka(f, K} — Velh
which we call the regulator map of f.
Proposition 6.4. — Lei &, § be asin (5,11}, Letm/ 2 1, m | m/, and let 57 be a finite
set of prime numbers such that S U prime(m’) C 5",

(1) Let r, v, ¢, d be integers satisfying (5.2.1) (5.2.2} and prime(cd) 1 &' = &,

Then the troce map
SN @ Q) — S{F) 9 QGn)
sends g qzm (f,7, 7, £, 87) to
[ (-mo -7 +5@02 8] oamlfinr’ &, 8).
£€9-8
We have the result of the same form for zm:(f, 7,7, £, 5") and 2 (f, 7. 7', &, 5} for any
integers v, 7' satisfying (5.2.3).
(2) Assume k=2. Then the norm map
Kol f, @Gm)) — Ka (£, QGn)]
sends zp{f, £, 8" to
H (l —_ Fl.'gJe—l +§(£)JE_2 . E)) . Zm(.fxgz S)

e3'~-8
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This follows from Prop. 5.3.

6.5. We introduce the dual cusp form f* of f. Let
= Zﬁnqn.
nxzl

Then f* € Mi{X1(N}))®C, and f* is an eigen newform of level N.

Theorem 6.6. — Let £, S be as in (5.1.1). Let x : (Z/m)” - C* be a character.
(1) For integers v, 1’ satisfying (5.2.3) and for £ = (—1)*" 1y (=1), we have
S x)pery (oulem(fr & ST = Ly () - @ni) 080T
BE(E/m)™
Next letr, v, ¢, d be integers satisfying (5.2.1) (5.2.2). In the case & € SLo{E), assume
e=d=1mod N. Let + = (—=1)* " 'x(-1) and let u, v € Z be as in (4.2.4). Then

Z X(b) pery (O'[,( c,dzm(fa T T’a g: S)))i == Ls(f*: A :T) : (271“?;)}\1—1‘_1 : '-Yi:
be(Z/m)*
where
¥ = Ed25(f,r, v, a(A)) — *d*%(e)5(f, ', ac(A))
~ AP DD, 7, “a/d(4) + d X ed)e(d)5(fr', £)
in the case £ = a{A), and
v = (¢ — %)) (@ — d"F(d)S{f. ', )
in the case £ € SLa(Z).
{2} Assume k = 2. Let + = —x(—1). Then we have
S abyregy (on(on (& S)) = i s Lo (S x5} - 2w 804, L)
bE(B/m)*
This follows from Thm. 5.6

7. The proofs of the zeta value formulas

In this section, we give the proofs of Thm. 2.6 and Thm. 4.6.

In 7T1-717, we fix k 2 2, N > 4, and m 2 1 such that m [ N, and consider
Yi(N) ® Q(¢m)- Thm. 2.6 and Thm. 4.6 are statements for Y(M, V), but as is
explained in 7.18~7.20, we can reduce them to a result (Prop. 7.12) on Y1{N)®Q(Cn).

We will identify Y1 (V)(C} with 1 (N)\$ via v - § — Y (N)(C) — Y1 {N)(C} (1.8),
where

FI(N)-:{(Z z)esu(z'a); c=0, d=1mod N}.

We will regard modular forms as functions on H as in 3.8.
We start with the following result of Shimura.
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Proposition 7.1 ({Sh]). — Let 0< <k — 1, and let
F=3 0.0" € S{XV)RC, g=3 bag" € My (Xa(N)) @ C.

nzl 220

Assume £ #£ 0, g# 0 and that f and g are eigen forms of T(n) for any n = 1 such
that (n,N) = 1. Then

/ oy T NS0 D B G 1, 25 1)y de A dy
1

= (41’(“)_31-\(5‘)D(f791 5)

(r=z+iysh = ycR) where E(j,7,1/N, s} is as in 3.8 and D{f, g, s} 15 @ zeto
function defined as in 7.2 below.

7.2. For f, g as in Prop. 7.1, the function D{f, g,3) is defined as follows. Write
T)f =Mn)f, Tlnjg=nin)g ((n,N) =1, A(n), n(n) e C).
Then the Dirichlet series
Z Mn)n™® and Z nlnin~*
{n,N)=1 (n,N)=1

are expressed as Euler products For a prime number ¢ which does not divide N,
let {{1 - f=%)1 —apf~s )} be the Euler factor of 2innye1 ARINTE at 4, let

{1 = 81 = it~ 5)} be the Euler factor of 2, wy=1{)n 7% at £, and define
a polynemial Pr{u) by

Polu) = (1 — w1 il — 1 Fou) (1 — TBru)(l ~ T fau).
Define Ly, (X ® 7, 5) by
Lim(A®n,s) HPe(f

where ¢ ranges over all prime numbers which do not divide N. Let
SNy ={nz1; prime(n) C prime(N}},
We define )
D{f,9,5) = Lgny(A@n,5) - Z Tnbnn "

nES(N)

7.3. In 7.3-7.6, we fix some notation.
Let x : (Z/m)™ — C* be a character. For & 2 1, we define elements

(7.3.1) Féh (here we assime m 2 2 in the case h = 2),

(7.3.2) E)((h) (here we assume x 3 1 in the case h = 2)
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of Mp(X1{N)) ®C as fcllows:

i3 h
Fm =mi? ZX(‘I)FCE/T)R bim
EM =m 'th VB for B2

_ 7(2)
B =m Zx(a)Ea/m,b/m
a,b

where a ranges over all elements of (Z/m)* and b ranges over all elements of Z/m.
Since 57, Fin, om0 Bty (0 # 2), 2nd T, EN 0 (h = 2) belong to
Muy(X1(N) @ QGm)) = Mu(X1(V)) @ Q(Gm), (7.3.1), (7.3.2) are defined as ele-
ments of Mh(X (N )) ® C. These elements are zero uﬂless x{~1) = {— 1) because
Ff:f -3 =1 b ) w.p and the similar formulas hold for E (h, #2) and E‘ )
7.4. Let x : (Z/m)" -+ C* be a character. Let r, +' be integers satisfying the
following (7.4.1).

0<r<k—1, 1€ <k~ 1, and at least one of r, ¥ is kb — 1.

{7.4.1) Furthermore m 2 2 in the case (r,r') = (k— 2,k — 1),
and x # 1 in the case (r,7) = (k ~ 1,k - 2).

We define a function z,(r,v") on by

(=17 (1)t

r — o k—r' T
(-1 =2yt N B )ng‘

N=T . FE E(” fr =k—1,

fr=kF—-1

(7.4.2)  zy(r,r) = {

For an integer d which is prime toc NV, we define a function 4z, (r, ') on § by

O Gl Sk A Y = P T
(743) dzx(?ﬂ! Ti) = ' -1 . (k") , ('}

(0" k-2 NTT R By gy Hr=Fk-1
These functions with v’ =k — 1 (resp. 7 = k — 1) are zero unless x(—1} = (—1}*""
(resp. x(~1} = (-1)*"").

The functions in {7.4.2}) with (r,+') # (0,5 ~ 1), (2,& — 1), (k — 1,2), and the
elements (7.4.3) with + # 0 are elements of M(X;(N)) @ C. In general, functions
in (7.4.2) (7.4.3) are C**-functions on $, but not necessarily holomorphic.

The following is clear from the definition.

Lemma7.5. — Letr, v' be as in (74.1) and assume r £ 0. Assumem > 2. Then we
hove

3 x{@)a (B, 7, 0(1), prime(sm)}) = ylr, 7,
ac{Z/m)*
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i r ) # (2 k—1), (k—1,2) (k—1,k—2), and

Y xta)oq(azmm(k, ', 001), prime(m))) = (& — c*%(e))azy (1)
a&(Z/m)*

for any integers ¢, d such that (c,m) = (d,mN) =1, whereu =r 4+ 2~k ifr' = k-1
anduw=k—7r ifr=k~1. ;

7.6. Define zeta functions Z7 {k,s) and Z] (k. x, 5), whose values are operators
acting on Vi c(Y1(N)), by

Zplkys) =S T(n)n™, ZEylkx,5)= Y x(n)Tlnin .

nzl nzl

(The letter T means that these zeta functions are defined by using 7(r) not 17(n).}
For f =37 5 ang” € Sp(X1(V}) @ C, define

[f]1 = G1-
We have
an = [T(n)fh
for all n 2= 1. Define

fs 3) Z T = 1 N(k’s)‘f]l'

nxl

For an integer j = 1, define

a(s.9) = erif [ ) @yt aGa),
Qif,7) = the complex conjugate of S2(f, ).

Then we have

(76.1) O(f,5) = @ri)* 77 (1Y - (- DL L)
for any j 2 1. (This follows {from the well known fact

| #w = am T L) )
Proposition 7.7. — Let x : (Z/m)” — C* be a character, and let f € Sp(X:(N))®C.

Letr, v be as in (T.4.1), and assume y(=1} = (—1)k_T (resp. (_1)1:—7—’) ifr =k-1
{resp. 7=k —1). Then

(—Sﬂ-zi)kﬂ /f‘ (N3\5 m

(2mi)" U2 (kT T o)

2y (r Y- A dy

B2 o=

18 equal to
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i the case r # 0, and o
1 -
5 (2m)" ™ O({lim s E] (kT )
in the case r = 0.
7.8. The proof of Prop. 7.7 is given in 7.8-7.10. To prove Prop. 7.7 In the case
(r ) = {7,k - 1) (resp. (r,r") = (k — 1,5)), we will apply Prop. 7.1 to the case

= 1/2 F¥ (zesp. 1/2 - EFY with x(-1) = (=137 {we assume m 2 2
(resp. x # 1) in the case j = k — 2). If we write

g= Z bag”,

75220

we have by 3.10

(7.8.1) S b =L s ~k+r+Uils —k+r+1)
nzl

(Here L{X, ) = 2z (n,)=1 X(mI0 %) From (7.3.1), we have
(7.8.2} T(n)g = bng forall n > 1 suchthat (n,N}=1

Lemma7.9. — If f is as in Prop. 7.1 and g is es above, D(f,g,8) 15 equal to the
complex conjugate of

(21w (, X,sfk+7'+l)Z;fN(k: s—k—l—r +l)f]
Proof. — By (7.8.1) and (7.8.2), we have
(7.9.1) Lon(3@n,s) =Lan(h x, s —h+1+1) Lan(h s —k+r +1).

Here Ly X x.8) = P on 1 i, N)=1 Anx{n)n~°. On the other hand, 3, sip Tnban ™"
is the complex conjugate of [ 32, g T(n)byn = f],, and by the fact

Tlnn') = T)T (0"} for n,n' € S(N),

this 350w T{n)b,n~* is expressed as:

(7.9.2)
S Tt = Y Tl n)ﬂf(s*’“""‘*l))( ST T(r R,
neS(N) nES(N) n&S(N)
Now 7.9 follows from 7.9.1, 7.9.2, and the fact

T(nn') = T(R)T(n) if (n,N)=1 andn’ € S(N). |

7.10. We prove Prop. 7.7. We may assume that [ is an eigen form of T'(n) for any
n > 1 such that (rn, N) = 1, since Sp(X1(V)) ® C is generated over C by such forms.
For such f, by (7.6.1) and Lemma 7.9, the case r # 0 (zesp. 7 = 0} of Prop 7.7 is
obtained by putting s = &~ 1 in 7.1 (resp. by taking Ym,x_1 of {(s—k+ 1)7! times
the both sides of 7.1).
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T7.11. For M, L 2 1 such that M + L 2 5, we defined in 4.5 a C-linear operator

v: VeelY (M, 1)) — Vig(Y(M, L),
Now we define another operator

Vi Ve (VML L)) — Vie (Y (M, L)),
which i3 anti-C-linear, by

Yz@yy =127 (zcVir(Y(M,L),y€C).
Proposition 7.12. — Let x: (Z/m)” — C* be a character, and let
Zy wik,x,8) = Z x(n) T (n)n 8

nx1
which is an operator-velued function acting on Vi, ¢ (Yi(N)).
(1) Assume x(=1) = (—1)*" (resp. (fl)k”,) Yr' =k—1fresp.r =k —1)
Then
(7.12.1}  per, y (% 2y (rr’)) + (fl)kwﬁlﬂ(perl‘N (% Cag(r )
= Zy ik, x,r) - @md) T 8wk, )
in Vec(Yi(N)) if () £ 0,k =1}, (2,5 — 1), (k= 1,2), and

(7.12.2) pery 5 (% N r’)) e (fl)kﬂmla’(perlaN (% - azgln 7")))

= Zun ko) (2T 7 (- digld) - (29)7) Bk )
in Vec(Ya(NV)) if r # 0.
(2) Assume m 2 2 and x(—1) = 1. Then
(7123) Z }((CL) CTEg w ( H {ga./'m,b/mv gO,l/N})
agZ/m™ beZ/m
= lim 5771 nl2,%, 8) - 2mi - 01 (2, 1)
n Vac(Y1(V)).
"The proof of Prop. 7.12 is given in 7.13-7.17.
7.13. In this 7.13, by using Poincaré duality, we reduce Prop. 7.12 to Prop. 7.7 and

to a statement (Prop. 7.14) concerning the “boundary” of zeta elements at cusps.
The canonical pairing {, ) : H! x H* = Z on Y1(NV){C) induces the pairing

Sym§~H(HY) x SymE~HHY) — @;

k-2
(B1 . Treg y1 - yp_n) — & _1 e Z ]:[(-rj-.yo-(j))

€GB g j=1
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(@150, The2, Y1, .- > Pu—z € M), This induces a perfect duality of finite dimensional
Q-vector spaces

(7.13.1) {,}: Vio{Y1(V) x Vi, (Y1 (N) —Q
and also a perfect self-duality of the finite dimensional Q-vector space
Vea(XL(V)) = HG(N)(€), . Symd~(H2) 2 @

where j denotes the inclusion map ¥1(N)(C) — X1 (N}(C}. (We regard Vi X1 (N))
as a subspace of Vi g(Y1(N)) and at the same time as a quotient of Vi, g (Y1 (N)).)
Furthermore the period map (4.10)

per s Su(Xu(V)) ® € — Vol (M)
induces the isomorphism of Shimura
(7.13.2) (Se(X1(N) 8 C)” = Vie (XL (V) = Vig(X:(V)) T
(f,9) — per(f) +/ per{g).
Consider the exact sequence

(7.13.3) 0 — Vic{X1(N)) —= Vie(Vi{N))

2 B (RY. SymE 2 (HY), & C

where & ranges over all cusps in X, {N)(C) and { ), means the stalk at .
By (7.13.2) and (7.13.3) and by the self-duality of Vi c(X;(N)), we have
(T.134) Forz € Vic(Yi(N)), z = 0 if and only if = satisfies the following conditions:
(z,per(f)) = {z,/ per(f}) = 0 for all f € S{(X1(N)) ® C, and H{z) = 0.
Concerning the Poincaré duality (7.13.1), the following (7.13.5)—(7.13.7) hold.
(7.13.3) For f € Sp(X1(N})@C, g € Mz{X,{N)) & C, we have
{per{g), per(f)y =0, { per(jeg),lg’ per(f)y =0,
(per(g), ¢ per(f}) = (=8m*)" " [ nyye FTg()yF 2o A dy
(r=z+1iy, z, y € R).
(o' per(g),per(f)) = the compler conjugate of {per(g), ¢ pex(f}).

(7.13.6) Forz € Sp(Xi(N) @ T, and for 1 € § < k— 1, we have

{81,wik, 7}, per(f)) = Q{f, ),
{6rn (k. 7), ¢ pex(f)) = Qf, 7).

(7.13.7) Let f € S3(X1(V)), and letw be a closed C°-differential form on {NYC)
which has af each cusp the growth O{r—log{r)®) fr — 0) for some c > 0 where v
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denotes the distance from the cusp (the metric is defined by fizing an analylic isomor-
phism between an open neighbourhood of the cusp and an open set of C). Then

{class(w), per(f)) =/ w A f-dlog(g)

T (N5

{class(w), ' per{f)) =/F (Nj\ﬁw/\?-dlog@).

((—87rzi)k_1 in (7.13.5) comes from
dlog(q) A dlog(g) = —87% - dz Ady
and from

f dlog(#) A dlog(f) = —8=% . Im(7),
C/{Er+Z)

where ¢ = £7™7))

We reduce Prop. 7.12 (1} to Prop. 7.7 and Prop. 7.14 below. Let f € Sp{X1(N)) @ C.

By (7.13.5)-(7.13.7), we have

(b, of (7121}, per(f)) = (‘Swgi)k—lfr (s

{rhs. of (7.12.1),/ per(f)) = (2nd)* T QU ZE N (k) - £)

cz ('Y yR e A dy,

[

R

{since T"(n} and T(n) are the adjoints of sach other in the Poincaré duality). Next
let d be an integer which is prime to N, and let h = (d? — d7x(d) - ( 1f;’d)*)f. Then
by (7.13.5)—(7.13.7), we have .

(Lhs. of (7.12.2),¢ per{f)) = (—Swzi)kilf firy- E - gz () R 3de A dy
Ty (NS 2

(') 2z A dy,

o

T

G M G
AN 2
{rhus. of (7.12.2), per(Fy) = (2r8)* " QUZT o (hk, 30, 7) - har).
Henee by 7.7, we have fore = 1,2,
(Lhas. of (7.12.e), //per(f)) = {r.hs. of (7.12.e), s/ per( ).
By taking the complex conjugate, we have for e = 1,2,
{Lh.s. of {7.12.e), per(f)}
the complex conj. of {(—1}*7"7 . {Lh.s, of (7.12.¢) for ¥, ¢ pez(F)}
the complex conj. of (—1)*7""'. (rhus. of (7.12.e) for ¥, per(f))
{rh.s. of (7.12.e}, per(f)).

it

Hence by {7.13.4), Prop. 7.12 (1) is reduced to Prop. 7.7 and to Prop. 7.14 below.
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We reduce Prop. 7.12 (2) to Prop. 7.7 and to Prop. 7.14 below. For g, A ¢
(YL (N)Y @ Q, the differential form

Mo = log(lgl) - dlog(h A~} ~ log(|A]) - dlog(glg| )

in 2.10 is written also as

ng,n = i0g([gl} - dlog(h) + log(|A|) - dlog(7) — d{log{|gl} - logi|R[)}

= —log{g|) - dlog(h) ~log(|h{) - dlog(g) + d{log(|gl) - log(irh)}.
Sinee class(d{log(|g[} - log(}h|)}) = 0, we have by (7.13.7)

(Class(n). pest ) = [ o sl - () 17 - dlog(a)

(elass(p ), per(f) = = [ | los(ll) - dtog(®) 4 £ - dloglo

T

= — complex conj. of {class(ny,n), ¢ per(f))
for any f € S3(X1(N)) ® C. We have also

fo(lgesl) = ~BS4(r), dloglgas) = ~Fi}
{(3.8.4) {iii}, 3.11 (2)). These imply, for any f € Sa(X1(N)) ®C,

(Lh.s. of {7.12.3), ¢ per(f)) = /F '(N)\ﬁm-zx(o, 1){=) - dlog(q) A dlog(7)

= (—8x%) - f ) 2y (0,1)(7) - dz A dy
Ti{N\H
{r.h.s. of (7.12.3), per{f)) = (2mi) -ﬁ(gii% 571ZEN(2,7, s)- f,1)

(since T"{n) and T(n) are the adjoints of each other in the Poincaré duality). By the
case k = 2 and r = 0 of Prop. 7.7, we have
{Lh.s. of (7.12.3), {'per(f)) = (rL.s. of (7.12.3), /per(f)).

By taking the complex conjugate, we have

{Lh.s. of (7.12.3), per(f))
= — the complex conj. of {Lh.s of (7.12.3) for %, per(/})
= — the complex conj. of {r.h.s of (7.12.3) for %, ¢ per(f))
= (r.hs. of (7.12.3), pex(f)).

Hence by (7.13.4), Prop. 7.12 (2) is reduced to Prop. 7.7 and Prop. 7.14.

Proposition 7.14. — 8(Lhs. of (7.12.e)) = d(r.hus. of (7.12.e)) fore =1, 2, 3, where
& s as wm (7.13.3) (we take &k = 2 in the cose e = 3).
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7.15. We give preliminaries for the proof of Prop. 7.14.

Let oo € X1{N)(C) (resp. 50 € X(N)(C)) be the standard cusp, which is the limit
point of the image of yi € % (y-— co).

The cusps of X;(N)(C) are described as follows. Let T be the set of pairs (v, w)
such that v € Z/N and w € ((Z/N)/(¢))™. Let Z/£1 be the quotient of £ by the
equivalence (v,w) ~ {(—v, —w}. Then there is a unique bijection

{cusps of X1 (N)(C)} — /21
which sends the image of { § % )35 € X(N)(C) in X1 (IN){C) to the class of (v, w mod v)
in ©/%1 for any (! %) € SL2(Z/N).

We define a canonical homomorphism

R (R, SymbH(HY)) o o Z
as follows. Take ¢ 3> 0, and let U = {r € %; Im(r) > c}. Then the map (§Z)\U -»
T (NS = Y {N)C) is an open immersion, and the image of this map has the form
(an open neibourhood of co In X1 (N}C)} — {oc}.

This map induces
(R Symf ™ (1)), = HH{ (B F )\ Symf~2(0) )
= 10U, Sym§ (1) / (1= (41)") HO(U, Symf 2 (1))
= 1O, Symf 204)) / (1- (81). ) BO(U, SymE—20)).

The pull back of H; on IV is a constant sheaf whose stalk at 7 € U is identified with
Zr+Z. Let e1 (resp. ez) be the section of H; on IV whose stalk at < I/ is 7 (vesp. 1).
Then (§1),(e1) = ey + 2. From this we see that

BT, Symg~* (H))/ (1~ (31),) BT, Symz™*(Ha)) @ Q

is a one dimensional (3-vector space generated by the class of e;f’z; and the classes
of efeb (s 2 0,t 21, s+t =k~ 2) in this space are zero. Hence there is a unique
homomorphism

B(U, Symg 2 (H))/ (1~ (1)) B3 (U, SymE~2(Hy)) — Z

which sends the class of eif_z to 1 and the classes cf efel (s 20,2 1, s+t =k —2)
to 0. This is the definision of R.
‘We define a homomorphism

B (Rlj, Sym%_z (Hiss @ Q@ — Q

{we use the same letter R) to be the composite

(R Symb 27 © Q<™ (R4, Symh (1 ))oo © Q 2 Q
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We have a commutative diagram
Miu(X(N)) ——C

(7.15.1) perN,Nl jx(zm)k—l
Vi () £ ¢

where the upper horizontal arrow is z:’zn anq”/ N~ ay. We have also a commutative
diagram

KYIN) ——R
{7.15.2) TeZ N x 2w
Ve () g
where the upper harizontal arrow is induced by
Ka(CU ™)) — R {g%au,¢®bv} — - log(|a]) — alog(Js)

(o, B & (I/N)Z, a, b e C*, u,vel+ g/,
Let

B = ®u (R, Symz " (HY)), @ Q
where z ranges over all cusps of X1 (N)(C). For (%) € SLy(Z/N), let

Ro(t®)' :BaC—cC

be the homomorphism induced by pulling back to X (v}, then pulling back by (5 u),
and then taking R of the 5¢-component. This map depends only on (v, w mod v) € £
Forz e B@C, z=0if and only if Ro (£ %) (z) = 0for all (%) € SLy(Z/N).

v

By this, Prap. 7.14 follows from Lemma 7.16, 7.17 below,

Lemma 7.16. — Let x : (Z/m)* — C* be a homomorphism, and let (te) €
SL3(Z/N). )

(1) Letr, v" be asin (7.4.1), and assume x(—1) = (—1)* (resp. (71)::4’) in the
case ' =k —1 {resp.v =k —1). Let

Zy = 2y (1)
assuming (r,r') # (0,k = 1), (2,k—1), (k- 1,2)
(resp. zy = gy (r,))

Jor an integer d such that (d, N) =1 assuming r £ 0), and let

" 1 el =
By=Ro(33) odover yind, P=g(Ber (-1 By
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(i} Assumek 23, 1" =k ~ 1. Then, in the case v # 0,
P=0
In the case v =0, if Q(w) denotes _
LOG T+ 1K)ty - {G(w/N,s) + (<17 ¢(—w/Ns) } - (2mi)* "IN
(here ((o,5), (o € Q/Z) 4s a5 in 5.9), we have
P=Qw) (resp. P=dQw)- FX(d)Qdw)).
(if) Assume k 23, 2< v <k—2. Then,
P =0
(i) Letk >3, (rr) = (k—1,1). Then if Q(v) denotes
~ L6V x(w) (¢ (0/V,0) — ¢~ /N, 0)),
we have
P=Qv) (resp. P=dQ(v) - #x(d)Qldv)).
(iv) Assume k=2 (sor =1 =1). Then in the case v # 0, if Q(v) denotes
~ L L) (¢ (o/N,0) = ¢(— w/N,0) ) - N7,
we have

P=@Qw) (resp. P=d*Q(v) — #x(d)Q{dv)).
In the case v =0, if Q{w) denotes

L0 O} { C(w/N,8) = (= w/N,5)} N7

we have
P =Qw) (resp. P=d*Qw) — Fx(d)Q{dw)).
(2} Let m = 2, and assume x(—1) = 1. Let

P Z X(G)Ro(gﬁ)*oaomg},fv ({ H ga/m‘b/mag(),l/N})-

as(E/m)* bEZ/m

Then, in the case v £ 0,
P= - lim s Lix.s)  x(v) (C(U/N, ~1) +¢(— /N, —1)) 2.
In the case v =20,

P =L{x, —1)x{w) ég}% sﬁl(q(w/N, 5) +¢(—wiN, s)) - 2.
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Proof — By using the commutative diagram (7.15.1) (resp. (7.15.2)), 7.16 (1)
(resp. 7.16 (2)) follows from the expressions of the constant terms of Eisenstein serfes
in 3.10 (resp. from the “g-presentations” of Siegel units in 1.9) and the following well
known equalities (7.16.1) (resp. (7.16.2)) and (7.16.3) for {(x, 8) and {* (=, 8).

(7.16.1) Fora € Q/Z and for any integer r = 1,
A e = T a1 ) =
(27@)7’”{((0’5’ S) + (_l)TC(aJ 5)}5:,~‘
(7.16.2) For o € Q/Z~ {0}, if we denote exp(2mio} by n, we have
log |1~ ] = lim 5™ (¢len 8} + S~ 5)).

(7.16.3) For any integer 7 < —1, {(a,r) = (-1 (—a,r). O
Lemma 7.17. — Let x : (Efm)* — C* be o character, and let (£ %) € SLa(Z/N).
Let § be any integer such that 1 < j < k — 1. Let
Pls) = Ro (§2)" 0 0(Zawlh, x5} bu(k 5)):
(1) Assume k23, =k —1. Then, in the case v # 0,
P(s)=0.
In the case v =10,
P(s) = L{ts — k + 1) (x(w)C(w/N, 5) + (~1) x(=w)c( —w/N,s)) - N7
(2) Assumek 23,2< < k~2. Then
Pls)=0.
(3) Assume k=3, j=1. Then
P(s) = —L{x,5) (X(v)g(v/N, s—k+ 1)+ (=1 x(—v)¢(— /N, sflcél)) TR
(4) Assume k=2 {30 j = 1). Then, in the case v # {,
P(s) = — L0 5} (x(0)¢ (/N5 — 1) + x(=v)( — v/N,s = 1)) - N .
Inthe casev=0 and m 2 2,
Pls) = Lx, s = ) {x()¢(w/N,5) + x(-w)¢( —w/N,8) ) - N,
Inthe case v=0and m =1,

Pls) = (s = 1) (C(w/V,5) + <[~ w/i,5) = 2(s)) - N7
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Proof. — Let & and B be as iz 7.15. For (v,w) € I, let
blv,w)e B

be the element characterized hy the following propearties: b(w, w) is supported on the
cusp corresponding to the element (v,w) mod + of £/, and Re (£ %) b(v,w) = 1
for any ¢, w € Z/N such that (! %) € SLy(Z/N). Then for any (¢ %) € SLo(Z/N)
and any (v, w') € &, we have

1 ifv =12, w=v mod (v)
{7.17.1) Ro(t2yb(v w') = { (=1} ifv=+ and w = —w' mod (v)
0 otherwise,

Forn 2 1, let 7(n) : B — B be the dual Hecke operator. Let £ be a prime
number, let ord(N) be the f-adic order of N, and let orde(NV, v) be the £-adic order
of the order of the ring (Z/N)/(v). By considering the dual Hecke operators locally
at cusps, we have

T ()b(v,w) = b(v, fw) + £ b (fu, w)
if ords (V) = 0,
T (0)b(v, w) = blv, bw) + > £ Lp(2u, ')

if orde(NV) > orde(NV,v) = 0, where v/ ranges over all elements of {((Z/NY/ (£o))™
whose image in ((Z/N)/(v)) coincides with w,

T/ (0w, w) = 270 " b{fw, w')
if orde(N) > ordg(N,v) > 0, where w' ranges over all elements of ({Z/N)/{(B0))"
whose image in ((Z/N)/(v))™ coincides with w,
T'(£)0(v, w) = £F1b{fv, w)
if ordg(N) = ordg (N, v} > 0. From this we have
(T17.2)  Zyw(k, x,8)  b(0,1) =
LiGs~k+1) > x(yi¢(y/Nos)- N7 (3.9 50, 1)

yE(Z/N}*

(T17.3) Zinlh,xs)-5(1,0) = L{x,8) > x(nyn 74+ ( > b(n,y))‘

nzl YE(B/ (N n))*
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On the other hand,

(7.17.4) B(d ik, k— 1)) =5(0,1) if k>3,

(7.17.5) A& w{k, i =0 if 2€5<k—2,

(7.17.6) G w(k, 1)) = -N"1B(1,0) if k3

(7.17.7) O(dy w(2, 1) =5(0,1) — N71h{1,0 )_

Lemma 7.17 follows from these (7.17.2)-(7.17.7}. [

7.18. TIn the rest of this section, we deduce Thm. 2.6 and Thm. 4.6 from Prop. 7.12.
Let M, NZ21l, M+N>=5

First we remark that Thm. 2.6 and Thm. 4.6 can be formulated without using the
operator ¢, but using " instead.

The image of the period map

Mp(X (M, N}) — Vic(Y (M, N))
and the image of the regulator map -
Ka(Y{M,N)) — Vo c(Y{(M,N)Y)

are contained in the fixed part of the operator tot =1 0.

Hence
(7.18.1) pery () =V peryy p(2) for any € ME(X(M,N)),
(7.18.2) vreg,, w(z) =t regy, v(2) forany z € Ko(Y(M,N)) @ Q.

Thus, the left hand sides of Thm. 2.6 and Thm. 4.6 are rewritten in the forms using
¢/ ingtead of ¢. On the other hand, the right hand sides of Thin. 2.6 and Thm. 4.5 can
be rewritten alsc in the form without using ¢ by the following lemma.

Lemma7.19. —  u(Spr (k7)) = (=17 - ( 3+ OV - Garn (k) (1 <5<k — 1)
Proof. — For y > 0, let B, be the elliptic curve over R defined by the equation
7
Y2=4%? 10 By X - 5 B ().

{Since Eéf’b) for k 2 1, A # 2 has a g-expansion with rational coefficients, and since
g=e™" cRif 7= yi, Eé':’g (%) belongs to R.) We have an isomorphism

ey C/{Zr + Z) — Ey(C);

. d "y
es(2) = (0w, 2), (5= Jolis 2))

where p{7,z}) (T €/, z € C) is ag in 3.8. The map  : (0,00} — Y{M,N)(C) in 4.7
is written as

— (By, ey (yi/ M), e, (1/N)).
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By the definition of p(r, ) in 3.8, we have

(7.19.1) tley(z)) =e,(—%) for 2€C

where ¢ denotes the complex conjugation F,(C) — E,{C). From {7.19.1}, we have

ey i/ M) = ey yi/M), ey (1/N)) = —e,(L/N).

Hence the complex conjugation & : V' (M, N)(C) — Y (M, N){C)} sabisfies
We(y)) = (8 21) w0l

Furthermore (7.19.1) also shows thai ¢ : Hy{F,(C), Z) — Hy(Ey(C), Z) satisfies
Her) =e1, iea) = —en

where e1, ey are as in 4.7, and hence we have

sclass(ip, el ek = (—1)" T (§ 9}, class(p, &l TTes T

where . denotes the automorphism of Hy (X (M, N)(C), {cusps}, Syms~3{H,)) induced
by the complex conjugation of X (M, NY(C} and that of F{C) with E the universal
elliptic curve over ¥ (M, N). Via the isomorphism

HU(Y (M, N)(C), SymE2(H)) & Hy (X (M, N)(C), {eusps}, Symb 3 (H1),

the complex conjugation ¢ on the Lh.s corresponds to (—1)k_1L of the r.h.s, and hence
we obtain :

(On v (B 3)) = (17 (=05 (50, e (B )
= (-1 (5 _(Jl)*5zv1,N(kaj)—
Since (5t )" acts on (—1)" on Vi z(¥ (M, N)), this implies
{our (b, 5)) = (177 ;?)*5M,N(k,j)- t
7.20. Now we reduce Thm. 2.6 and Thm. 4.6 to Prop. 7.12.
We first prove Thm. 4.6. Let M, N 2 1, M + N 2 5, and assume prime{M) C
prime(NV). The proof for zeta elements with ¢,d and that for those without ¢, d are

given in the same way, and so we give here the proof with ¢, d. We will apply Prop. 7.12
by taking (M N, M) as {N,m) of 7.12. Take M’ » I and L > 4 such that

M? | M', MN|L, prime(M") = prime(M), prime(L) = prime(MN)
and let
(7.20.1) V(M L) — Y1 (MN) @ Q)

be the composite
-1

VM, L) — Y(M(M), L) —2s ¥ (M, L(M)) — Y1 (MN) @ Q(Ca)
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which is used to define 42w aa(k, r, v, 0(M), prime{AM)) (5.2). Then it can be
shown that the canonical projection Y{M', L) — Y (M, N) factors through (7.20.1).
Hence the trace maps

M(X(M',L)) — Mi(X(M,N)) and V(Y (M', L))~ Vig(Y(M,N))
factor through the surjections '

tarocy  My(X (M, L)) — Mu(X1(MN) @ Q(Car)),
turoeany V(Y (M, L)) — Ve o (Y1 (M N) @ Q(Cur)),

respectively.
The trace map My(X(M' L)) — My(X(M,N)) sends qzpr r(k,r,v) to
c,dZM,N(k; T ’r"'} by PI'Dp. 4—.3, and fM,O(M) sends c,dzﬂf’,L(k;T: T") to

z1,ew 30k, D(AM), prime(M}) = Mrf_lzl,MN,M(k, r, v’ 0(1), prime(M))

(Prop. 5.10). The trace map Vi, o(V (M’, L)) — Vio(Y{M, N)) sends dper r (k, 1) to
Sarwv(k,r'), and Lag,00m) sends 5M’,L(ky ) to .

81,0 (ke ', O(M)) = A7 161 arw (e, 1) € Vig(V1 (M) € Vao(V2(MN) © Q(Car))-

(Here we regard Vio(Y1{MN)) as a direct summand of V; g(V1(MN) & Q((ar)) in
the canonical way.) By these facts and by (7.18.1), 7.19, Thm. 4.6 is reduced to the
special case £ = 0(1), S = prime{m), m | N, N = 4 of Thm. 5.6 (2). By Lemma 7.5,
this case follows from Prop. 7.12 {1).

In the similar way, Thm. 2.6 is reduced to the special ease £ = 0(1}, 5 = prime(m),
m | N, N = 4 of Thm. 5.6 {1), and this case follows from Prap. 7.12 (2}.

CHAPTER II
-ADIC EULER SYSTEMS

In this Chapter 11, we define Euler systems in the Galois cohomology groups related
to cusp forms. We define them in §8 by using Fuler systems in Kz of modular curves.
A mysterious fact is that, via p-adic Hodge theroy, they are related to the Euler
systems in the spaces of modular forms (see §9) and hence to the zeta values L(f,7)
(1< r<k—1) for cusp forms f of weight k (§9). We will deduce this fact from a
generalized explicit reciprocity law in [KK3].

In Chapter II, we fix a prime number p.

‘We denote by @@ the algebraic closure of @ in C.
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8. Definitions of p-adic Euler systems

81, Fixkz2

In this section, we construct the following “p-adic zeta element” (8.1.1)-(8.1.3)
basing on zeta elements in K3 of modular curves constructed in §2. The right hand
sides of {8.1.1)—(8.1.3) are étale cohomology groups, and {k —r) means the Tate twist,
as explained in 8.1-8.3. Our method to define p-adic zeta elements by using Beilinson
elements is the “modular curve version” of the method of Soulé [So] in the cyclotomic
theory in which he defined various p-adic cyclotomic elements by using cylotomic
units. In the next section, these p-adic zeta elements will be related to zeta elements
in the spaces of modular forms considered in §4.

(8.1.1) ez (kyr, ') € HY(Z[1/p), Vig, (Y (M, N)) (& — 7))
where M, N 21, M+ N 25, and r, v, ¢, d are integers satisfying
1< <k~1, (¢,6pM)=1, (d 6pN)=1.

(812) c,dzfj)v,m(k: T, T’1 51 S) < H (Z [l/pa C‘m] 3 ngzp (K(JV))(.I{: - T’))

where ¥V, m 2 1, £, Sareasin (5.1.1), pe€ &, and r, #/, ¢, 4 are integers satislying

=
1gr €k—1, prime(cd) NS =2, (cd,6)=1, {d, N)=1

(8.1.3) e a2 (Fory e €, 8) € HY(Z[1/D, Gm], Vo, (F)(k — )

wherem 2 1, f =3, ., a,q" is a normalized newform in My(X1(N)) @ C (N > 1),
£, 8, r, 7, ¢ dareasin (81.2), A is a finite place of F = Q(a,; n = 1), and Oy is
the valuation ring of A.

The p-adic zeta elements {8.1.1) (resp. (8.1.2), (8.1.3)) will be defined in 84
(resp. 8.9, resp. 8.11). ’

In this paper, the p-adic zeta elements in (8.1.2), (8.1.3) and zeta elements in §5
and §6 with £ = a(A) will take care of zeta values with bad Buler factors (Fuler
factors at primes which divide V). Those with £ € SLy(Z) can not take care of bad
Euler factors, but will take care of delicate integrality.

8.2. We fix notation concerning étale cohomology.

We denote the étale cohomology group HY, just by He. Furthermore, for & ring R,
we denote the étale cohomology group HE, (Spec(R), ) simply by HY(R, ). In the case
R is an ifegral domain with field of fractions K, we denote H(R, 7..(%)) simply by
H?(R, ) for a sheaf of abelian groups AU on Spec(K )a, where j : Spec(K) — Spec(R)
is the inclusion morphism.

For a field K with a fixed separable closure K, we identify a sheaf 2 on Spec(i)s;
with the corresponding Gal{k /K )-set.

Let K be a finite extension of {J, for a prime number £ (resp. K be a finite extension
of ). Let B = K (resp. R be a ring of the form Ox[a™?] for some a € O ~ {0}

ASTERISQUE 285

p-ADIC ZETA FUNCTIONS OF MODULAR FORMS 181

such that p is invertible in R). For a finitely generated Z,-module T endowed with
a continuous action of Gal(E /K) (resp. a continuous action of Gal(EK/K) which is
unramified at almost all finite places of K), we denote

HY(R,T) = lim HY(R, T/5").

It is known that H?(R,T) is a finitely generated Z, module, and is zero if ¢ > 2
{resp.if ¢ > 2 and p is odd or if ¢ > 2 and K is totally imaginary). For a finite
dimensional (p-vector space V' endowed with a continucus action of Gal(K/K), we
denote

BY(R,V) = HI(R,T) 93, 0,

where T is a Gal(K/K)-stable Z,-lattice in V. (Such T exists, and the r.hs is
independent of the choice of T'.)

If K is a finite extension of Qy for a prime number ¢, H4(K,T) and HY{(K, V)
colncide with the continuons Galois cohomelogy groups H¢(Gal{K/K),T) and
HY{Gal(K /K, V), respectively.

8.3. For M, NV 2 1such that M +N 2 5, define a smooth Zp-sheaf ] on Y(M, N)g
as follows. Let A : E - Y{M, N} be the universal elliptic curve. We define

Hy = R'A(Z,).

The Zp-sheaf on Y{M, N)(€) associated to Hj coincides with %' @ Z,, and the
étale cohomology group EN{Y (M, N) ® Q, Sym%;z(’hf}g) @z, A) for A = Zy, Qp or
Z/p™ {n 2 1} is identified with Vi 4(Y (M, N)) = H* (¥ (M, N)(C), SymE~* (H") @ 4)
(4.5.1). Thus, for such A, V3, 4{Y(M,N)) is endowed with 2 canonjcal action of
Gal(Q/Q). This action is vnramified at any prime number which does not divide
pM N. This explains the notation on the r.h.s of (3.1.1).

For any curve ¥ of the form G\Y (V) with N > 3 and G a subgroup of GLa(Z/N),
Vi, () for k 2 2 (5.4) iz endowed with an action of Gal{fl/Q) which i induced
from the action of Gal(F/Q) on Vig, (Y (N)).

We have defined V7, (Y1{IN)} for N = 4 (the case M =1 of (4.5.1}). In the case
N =1,2 3, we define V2, (Yi(NV)) as follows {in an ad hoc way). Let I £ N g
3. Take L > 4 such that N [ L, and let Vi z (Y1(V})) be the image of the trace
map Viz, (Y1(L)) — Vi, (Y1(¥)). Then Vi z,(Y1(N)) is independent of the choice
of L. The action of Gal{(3/Q) on Vig, (Y1(¥)) induces the actions of Gal(Q/Q) on
Vi,z, (¥1(IV)). This explains the notations on the r.h.s of (8.1.2).

Finally the notation on the r.h.s of {8.1.3) is as follows. For a finite place A of
F=0Qay; nxl),let . '
Fs, Ox
be the local field of F at A, and the valuation ring of Iy, respectively. Let Vg, (f)
be the Ox-submodule of Vr, (f) (6.3) generated by the image of Vi z, (¥1(N)). Then
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Vo, (f) is a free Oa-module of rank 2. The action of Gal{(3/Q) on Vg, (Y1 (V) induces
an Fy-linear action of Gal(Q3/Q) on Vi, (f) and an O,-linear action of Gal(Q/Q) on

VO,\ (f)
8.4. We define the p-adic zeta elements (8.1.1).

By 2.3, we have an element
(c.d Zatpm Npn )z € UmKo(Y (Mp®, Np™)).

where the inverse lmit is taken with respect to the norm map. For », v € Z such
that 1 <" < &k — 1, we define below a canonical hommomorphism
Chagn (k') s Im Ko (Y {(Mp", Np™)) — BYZ[1/p], Vi, (Y (M, N)){k - 1)),

ke

We define

c,dZEﬂﬁ,n,an(k,T, 'y = Chur v (&, v, 7" W{o,a 2aapm 1ope Inz1)-

The definition of Chay x (%, 7, 7') is as follows.

Let E be the universal elliptic curve over Y{M, V), and let T, F be the p-adic Tate
module of IV regarded as a p-adic smooth sheaf on Y (M, Ng. Poincaré duality gives
a canonical isomorphism
(8.4.13 Tpko 22 H(1)
where (1) means the Tate twist, and this induces
(8.4.2) Symz*(H;) = (Symf *(T,E))(2 ~ k).

Define Chpy v (k, v, 7’') to be the composite map
(3.4.3)
lim Ko (Y{Mp™, Np™)} — lim H*(Y (Mp", Np™), (Z/p™)(2))

— Im (Y (Mp™, Np™), {(Sym* (T, E/p"))(2 — )

T

— lm BA(Y (Mp™, Np™), (Symf-(H}) /p") (k — 7))

k)

e T B (Y (M, V), (Symd 2 (H2) /™) (k — 1)

T

I h(_nf_lHl (@s Vk,Z/p“ (Y(NL N))(k - T))

where:

The first arrow is the Chern character map. (For a scheme X on which p is invertible
and for f, g € O(X)", the Chern character map Ko{X) — H2(X, (Z/p")(2)) sends
{f,9} to A{f) U h(g), where & is the connecting map O{X)* — HI(X, (Z/p™){1}) of
the Kummer sequence

™
0~ (Z/p"){1) — 0% T 0% — 0,

ASTERISQUE 295

p-ADIC ZETA FUNCTIONS OF MODULAR FORMS 18z

and U is the cup product.) The second arrow is the product with

-1 k—r'— -—.
3‘1811(: Vo 6?51 De (Cp")®( )

where {e1n,e2n} is the basis of T,E/p™ over Y (Mp™, Np™). The third arrow is
by (8.4.2). The fourth arrow is the trace map. The last arrow is defined by the
spectral sequence

Ey® = HYQ,HY(Y (M, N) ©Q, ) = H**(Y(M, N), )

and by the fact H*(Y (M, N}Y®Q, ) = 0 for b = 2. {The last fact is because Y(M,N)®
Q is an affine curve over an algebrateally closed field.) By the following 8.5, 8.6, the
image of Chyy (£, 7, r') is contained in the image of the canonical Injection

HY(Z(1/p], Va,z, (Y (M, N))(k — )
= liw HYZ[1/p], Viz/p- (VY (3, N))( — )

— B BN, Vi gppn (VM N — 1)

Lemima 8.5 ([Ped, 2.2.4], [Rud, B3.3]). — Let K be a finite extension of Q, let O be
the ming of infegers of K, and let T' be o finite Z,, module endowed with o continuous
action of Gal(K/K). Then:

(1) For any set S of finite places of K containing all places .iymg over p, the
canonical map WH{Og {5, T) — H (K, T is injective.

{2) The image of lim HMNK((pn),T) — HYE,T) is contained in the image of
HY(Ox [1/p].T) — HNK, T).

- Proof. —— We have an exact sequence

G (0x[$7), T) — B O[S, T) —— HY(K, T) — @, H2(Ox(S ), T)

where v Tanges over all maximal ideals of Ox[S~"] and H! means the cohomology
with support in v. For each v, we have an exact sequence

%0, T) = B*(K,,,T) — HL(Ox[S™Y,T)
— HYO,,T) — H'(K,,T) — H2(0k[S™'], T)

where K, is the local field of K at v and O, is the valuation ring of K,. It is
sufficient to prove that for each maximal ideal v of O [1/p], HY{0,,T) — HY(K,, T)
is injective and that the image of lim H'{K,({p),T) — H(K,, T) is contained in
the image of H'{0,,T"). We have

HY(O,, T) = HYGal( KX/ K,), HY K T))
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where K»¥ denotes the maximal unramified extension of K, and hence H}(0,, 1) —
HY(K,,T) is injective. The cokernel of HY{O,, T} — H{K,, T} is isomorphic to

HO(Gal(K /K, ), B (K, T))
=5 (BN Gal(/ KL ), B TV (0N} ()Y = Hom( ,Qy/Zy))
< {HH I, B (K2, TV (1))}
where ¥, denotes the residue fleld of », and the composite map

lim B (K (G ), T) — HA(EL, T) — {HP (O, T9(1)))

factors through {lim H'(F.(Gem), H (K, TV(1))) 1. Hence we are reduced ta
showing lim H* (Fy{Gpm ), HYEX, T¥(1))) = 0 and hence to the fact that the
p-cohomoiogical dimension of the field { J,,,,; Fo(Cpr) is zero. a
8.6. The projections Y {Mp™ Np*) — Y (M, N) factor canonically as

Y (Mp®, Np™) —— Y{M,N) ® Q((pn) —> Y(M, N},
and hence the image of Chas w{k, 7,7’} is contained in the image of

Jim H* (Q, H (Y (M, N) 8 Q) © T, Symf72 (Hh/p™) )

m,n

= lim F{Q(Gpr ), Vizypm (Y (M, N})).

™,
By this and by 8.5, we obtain the last comment in 8.4.
The following 8.7 is deduced from the norm properties 2.3, 2.4 of zeta elements
in Ky by Lemma 8.8 below.

Proposition 8.7. — Let the notafion be as in (8.1.1).
(1) Let M', N' 2 1 and assume
MM, N|N, (,M)=(@d,N)=1,
prime(Ap) = prime{M’p), prime(Np) = prime{N'p).
Then the norm map

T (Z[1/3), VA, 2, (¥ (M, N (o — 1)} — H(Z[1/5], Vi, (¥ (M, M) — 1))

zends c‘dzf\ﬂ),‘N,(k, r,r') to c,dzf.fl?N(k,r, ).

(2) Let £ be o prime number which is prime to Mped. Then the norm map
H (Z[1/p], Ve, 2, (Y (ME NOY I — 7)) — HY(2[1/p], Vi, (¥ (M, N)) (b = 7))

sends c,ggzl(\f%‘m(k,r, ') to (1-T"(8)( 1(/)3 (1))*4?“‘"—«—( 1[/)12 1—35)*-3’“_1_2’")~c,dz§\f,?N(k,r, )
in the case £ does not divide N, and to (1~ T'(£)(}*%)"- &™) -C,dzg}?N(Ia,?', 'y in
the case £ divides N.
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Lemma 8.8. — The homomorphism Chpg v (k, 7,7} in 8.4 has the following properties.
(1} T'{(n) o Chpr n(kyr,#) = rr 1 Chag w(k, 7,7} 0 T'{n) for any integer n which
is prime to Mp.
(2) (29) o Chpn(kyrr’) = a7 ~HF " =1 (ab) " Chipr (ke v, 7)o (§3)" for any
integers a, b such that {a, Mp} =1 and (b, Np) =1

This lemma is proved easily.
8.9. We define p-adic zeta elements (8.1.2).
Assume first £ = o{A4). Take M 2= 1, L = 4 such that
mA|M, N|L, M|L, prime(M) =25, prime(L)= 5Uprime{N).
Let
tmaa) P Vio, (VM L)) — Vig, (Yi(N) © Q(Gn))
be the homomorphism defined in the same way as the map &, 44y - Mp(X(M, L)) —

Mu(Yi(N) ® Q(¢m)) in 52, Let Vig, (Yi(N) ® Q((n)) be the Z-lattice of
Ve, (V2 (V) @ Q((n)) defined to be the image of the canonical injection

Z[Gal(Q{(r)/ Q)] & Viz, Y1 (N)) — Vi, (i{V) @ Q).
Then t, 54 Induces a hemomorphism
Vi, (Y(M, L)) — Vigz, (Y1 (N) ® Q(m)).

Hence we have a homomorphism

trmga(a) - HHZ(1L/D], Vi, (Y(M, L)) — B(Z[1/p], Vi, (Y1(V) @ Q(Gn)))
= HYZ[1/p, 6m)s Viz, (TL (V).
We define
et 2 7,7 6, 8) = b iy (2B (k7).

By Prop. 8.7 (1), z&ﬂ{;)M(k,r, r',£, 5} is independent of the choices of M, L.
Next assume £ € SLa(Z). Take L 2 3 such that

m| L NI]L, prime(l}=35.
The trace map Vg, (Y (L)) — Vi, (Y1(V) ® Q(¢r)) induces a homomerphism
Viez, (Y (L)) — Vi, (Vi) ® Q(Gin))-
Hence we have a homomorphism
HHZ(1/8], Ve, (Y () — B (Z[L/p), Viz, (V1Y) © Q)
& 0 (Z[1/p, Gl Vi, (Y1 (V).

We define dezﬁ)vym(k,r; v, £,8) to be the image of 5*(c,dz‘(,_ﬂ(k,r, ')} under this
homomorphism. By prop. 8.7 {1), this element is independent of the choice of L.
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Propesition 8.10. — Let the notation be as in (8.1.2). Let m’ 2 1, m | m/, and let &'
be a finite set of prime numbers such that SUprime(m’) C 8’ and prime(cd) NS’ = &,
Then the norm map

HZ [Gme, 1/p], Vioz, (Yi(N))) — H*(Z[Cm, 1/, Ve, (11 ()
sends c,dzgi:?v,m'(k: v, £,8") to
I (-T@et 7+ & @ 7)) carlh e )
te5i—5
where A'(£) denotes ( § 192)* in the cose £ does not divide N and A'(¢) = 0 in the

case £ divides N.

This follows from 8.7, in the same way as 5.3 followed from 4.3, 4.4.

8.11. We define p-adic zeta elements c,dz?(,f) {f,m, 7", £,5) in (8.1.3) to be the image
of the p-adic zeta element C,dzﬁ}v,m(k,?", ', £,5).

Proposition 8.12. — Let the notation be as in (8.1.3). Leim’ 21, m | m/, let & be
a finite set of prime numbers such thot § U prime(m’) C 5§ and prime(ed) N5 = @,
Then the norm magp

HY (Z{Gw, 1/p], Vo, (1) — B (Z[¢n, 1/2], Vo, (F))
sends Cidzgf,)(f, r,r, £, 8 to
H (1 - EEO‘EI - gﬁr -+ E(E)D};2 . Ekili%ﬂ)) ' c,dzg)(fu T, T”’ ‘fs S)
£e5T—-8
This follows from 8.10.

9. Relation with Euler systems in the spaces of modular forms

In this section, we state that the p-adic zeta elements in §8 are related to the zeta
modular forms in §4, via the p-adic Hodge theory (Thm. 9.5, 9.6, 9.7). The proof of
Thm. 9.5 is given in §10, §11. Thm. 9.6 and Thm. 9.7 follow from Thm. 9.5 easily.

First in 9.1-9.3, we review necessary things from p-adic Hodge theory. See Falt-
ings [Fal] [Fa2] [Fa3], Fontaine [Fol] [Fo2] [Fo3], Fontaine-Messing [FM], Tsuji
[¥T,...

9.1. Let X be a complete discrete valuation field of characteristic O with perfect

residue field & of characteristic p. Let Bar be the “fleld of p-adic periods” associated

to K, defined by Fontaine ([Fo2], [Fo3]}. Bag is a complete discrete valuation field

whose valuation ring contains the algsbraic closure K of K. The action of Cal{K /K)

on K is extended to a canonical action of Gal(K/K) on Bgg, and '
HY%(K,Bir) = K.

(HY(K, )= HGI(Gal(K/K), )= the Gal{K/K)-fixed part.)
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9.2, We review de Rham representations.
For a finite dimensional Q,-vector space V' endowed with a continuous action of
Gal{K/K), define a K-vector space Dan(V) by

Dap (V) =HY(K,Bar ® V).

(We denote Dyr(V) by Dar(K, V) in the case we need to make K explicit.) Then
Dyp(V) has a descending filtration {Dig (V)),., defined by

Dig(V) = HY(K, Bir ® V)
where BQR denotes the subset of Bar consisting of elements whose normalized valu-
ation is = 1.

In general, dim g (Dyr{V}) < dimg, (V), and we say V' is a de Rham representation
of Gal(K /K ) when the equality holds here. De Rham representations are stable under
taking direct sum, tensor products, duals, and under taking subquotients. If L is a
finite extension of K in K, V is de Rham if and only if it is de Rham as a representation
of Gal(K /L), and we have L @x Dar(K, V) — Dar(L, V) i V is de Rham.

The following (9.2.1) and (9.2.2) provide important examples of de Rham repre-
sentations ([Fa2|, [Fa3i, [TT]).

(9.2.1) Let X be a proper smooth scheme over K, let m € Z, and let
V=H™"X 9 K,Qp).
Then V is a de Rham representation of Gal(K/K), and Dar(V) is identified with

the de Rham cohomology HT, (X/K). The filtration on Dgr(V) coincides with the
Hodge filtration on HIL (X/K).

(9.2.2) Let Y be a curve of the form G\Y(N) with N 2 3 and wilh o subgroup G of
GLo(Z/NY). Let k 2 2, and let

Vo= Viq, (YY) (8.3).
Then V is a de Rham representation of Gal(Q,/Qy), and
Din(V) = Dar(V) for i<0, Dip(V)=0 for i 2k,
Din(V) = My{X)®Q, for 1<i<k—1,
where X is a smooth compactification of ¥. (See §11.)

9.3. For a de Rham representation V, we have a canonical homomorphism
exp® : HY{K, V) — DIp(V)
called the dual exponential map {{BK2|, [KK2]). This is defined as the composite
HY(K,V) — HYK,BY% ® V)« HY(K, Bl @ V) = D§p(V)
where the middle isomorphism is the product with the element

log{Xeyelo) € H' (K, Zp) = Homeon(Gal(K / K), Zp)
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defined as follows. Here H'(K, ) are the continmous Galois cohomology groups
H'(Gal(K/K}, }. As a homomorphism Gal(K /K) — Zip, log(Xeyelo) is the composite
of the cyclotomic character Xeyao : Gal(K/K) — Z, and the logarithm Z7 — Z,.

9.4. TetY and X DY beasin (9.22). For k> 2and 1< i < k— 1, consider the
dual exponential maps
(9.4.1) exp® s H'(Qp, Vg, (V)(8)) — Mu(X) ® Q.
Here to define (9.4.1), we used the fact
Dir{Vag, (Y){i)) = Dig(W, 0, (¥)) = Mp(X) @ Q,
(Tate twist shifts the filtration of Dyg).
Let f be a normalized newform in M (X, (V) @ C of weight & and of level NV, and

let F, A, Fy be as in 8.3. Then by {9.2.2), V& (f) is a de Rham representation of
Gal(Q, /Qp),

DV, (£)) = Den(Ve, (£)) for i <0, Dig(Ve(f)) =0 for i >k
and as a quotient of D%y (Vi g, (Yi(N))) = My (X1 () @, (1 €i<k~1), we have
Dir(Ve, ()} = S(f)@r Py for 1<i<k—1
Here S(f) is as in 6.3, We have the dual exponential map
exp} : HYQGn) 8 Qp, Ve (£)(3) — S(F) & Fr @ Q(Cm)
forigig<k-1.

Theorem 9.5. — Let the noiation be as in (8.1.1). Assumel <r £ k—1, at least one
of r, " 45 k — 1, and prime(M} C prime(N). Assume further that M = 2 in the cuse
(r,r') = (k= 2,k —1). Then the dual exponential map (9.4.1) with Y = Y (M, N)
and i = k — r sends the image of C,dzgf}?N(k,r, 'y in HHQp, Vi, (Y (M, Nk ~ )
to the following element of My (X (M, N)) C Mp(X{M,N) @ Q, :

sdzpr (k) if p divides M,

(pT’(p)(léP?)* -p") cazan(hr, ) if (0, M) =1 and p| N,
(@D r+ (800 0 emnb ) of (0, N) = L
See §10, §11 for the proof of Thm. 9.5.

Theorem 9.6. — Let the notation be as in (81.2). Assume 1 € r < k— 1 ond
of least one of v, v' s k — 1. Then the dual expomential map (9.4.1) with ¥ =
Yi{N)®Q($m) and i = k—r sends the image Ofc,dzg')v,m(ka"': ' £,8) in THQG)®
Qp: Vk,@p (}/1 (N))) to

c,dzl,N,m(ku T T’:é-, S} & Mk‘ (Xl (N)) ® @(C‘m) Z ﬂjk(Xl(N)) @ @(Cm) @ @p-
This follows from Thm. 9.5 and Prop. 4.4.
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Theorem 9.7. — Let the notation be as in (8.1.3). Assumel € r € k—1, and at least
one of r, v isk—1. Let F, A\, F) be as in 8.3. Then the map

3D} B Q) © @y Vi () — 7)) — S(F) &r Fr 8 Qém)
sends the image of o q zg)(f, v £,8) to
adzm(firr’,6,5) € S(f) @ QGn) C 5{f) @F Fr @ Qlm)-
This follows from Thm. 9.8.

10. Generalized explicit reciprocity laws

In this section, we deduce Thm. 3.5 from a generalized explicit reciprocity law
proved in [KK3]. In this proof, we use the compatibility of two dual exponential
maps (10.9.5) and this compatibility is proved in § 11. Generalized explicit reciprocity
laws in [KK3] are related to generalized explicit reciprocity laws of Vostokov ([Vol).

10.1. In 10.1-10.5, we review the theory of Byg not assuming the residue field is
perfect. The theory of Byr in this general case was studied in the unpublished work
of Tsuzguki [TIN] and is explained in [KK3, §2].

Tn 10.1-10.5, let K be s complete discrete valuation field of characteristic G with
residue feld & of characteristic p. We assume {# : £°] < oo. In our application,
will be a p-adic completion of the function field of a modular curve.

We define the ring Bag over X, and we define an action of Gal(K /X)), a filtration,
and a connection on Byg, as follows.

Let C be the algebraic closure of K. For a subfield K of K, and for n 2 1 let

Bu(Org/Ox) = B ({ Spec(Ox/p™)/ Spee( O /5™))__, Ourss)

where O ig the discrete valuation ring Qg MK, ( Jerys means the orystalline site with
respect to the standard divided power structure on the ideal (p) of Ox /g™, and Oy
is the structure sheaf of the crystalline site. {The case K = K and the case K = Q)
will be important for us.) Let J,(Ow/Ox) be the kernel of the cancnical surjection

Bo(Og/0k) — Ox/p®, and for ¢ 2 0, let J, (O,C/OK)[q be the g-th divided power
of Jo(Ox/0g). Define

Boo{Og/0x) = lim B, (Og/Ox},
Joo(Oz/Ox) = lim Jo (O /Oxc),

Joo{Oz/ O)ld) = lim J, ( O/ Oxc),

lim
Bl s = I (Boa{Og/0x)/ Joo(O/ Ox) © Q).
q
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Then BIR,TC_ 10, is a discrete valuation ring. Let Byp /g, be the field of fractions of
+

B RE/D, and define

Bk = Bangx ®55 1 - Birre,
We denote
Ban = BdR,“E/)c-
The inclusion map Ox/p™ — Bn(0x/0Ox) induce
K «— Bug.

In the case & is perfect, Bag /g, = Birxc and this is the “usual® Byr which
appeared in §9.

Gal(K/K) acts naturally on By /-

We define a filtration on Byg x5 28 follows. Let

(Z/p™)(1) — Jn(Ox/Zp)
be the homomorphism @ — log(y?" ) where a is a p™-th root of Land y € Bp{Ogx/Zy)
is a lifting of the image of & In Og/p". (Then y¥" is independent of the choice of ¥,
and belongs o 1+ Jo(Og/Z,) s0 that log(y?" ) € Ju(Og/Zy} is defined.) We obtain
a homomorphism ’
Zp(1) — Joo (O tp)

by passing to the inverse limit. The image of a generator t of Zp(1) in the discrete
valuation ring Byg g/, 15 2 prime element. Hence

_ gt —1
BdR.f/K_BdR,K/K[t L

For 4 2 0, define

I8 e = 1 (T O 010 Tl O/ 0) € Q) € Bl e
7
We define the filtration on Byg &,k DY
; oty e plitd
BdR,E/K - jyﬂt JJdR,?E/K‘

in the case K = @y, this filtration coincides with the fltration given by the normalized
discrete valuatiop of B df_{f Qs '

We denote B;R,E K simply by Bjn-

We digcuss about the canonical connection on Bgr. Let

0k = (im 06, r2/0") B Q-
We have
dimg ((1) = log, {[# : &¥]).
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Let ﬁ?c be the g-th exterior power of ﬁ}c over K. Then there exists a unique Bz 10,
linear map v
d : BdR — ﬁ,lc ®}C BdR

satisfying the following conditions (i)—(iii).
(1) d(ab) =adb+bda fora,be k.
(ii) The restriction of d to K coincides with K — 0} ; a — de.
(i) d(J(iinJ{,f/Jc) C - ®x Jc[&.;%ﬂc for any g = 1.
Furthermore, for any i € Z, we have an exact sequence

i i d & i1 4 A i d
(10.1.1) 0 — Bipgsg, — Fan — (O ®x Blg! — Mk ®c By —— ...

where d : O ®x Bar — ﬁ;’{sﬂ @x Bag is defined by diz ®@y) = dz @y + (-1)z @ dy.

10.2. As in the perfect residue field case, we have the functor Dy and the notion
“de Rham representation”, defined as follows.
For a fAnite dimensional Qp-vector space V' endowed with a continuous action of

Gal(K/K), let
DdR(V) = HD(GaI(E/iC), Bar ®Qp V)
Then Dyr(V) is a K-vector space endowed with a filtration ( in(V));op defined by
QR(V) = HO(G&I(K/]C), BziR ®Qp V)a
and with a connection
YV Dyp(V) = ﬁ;lc ®x Dar(V)

induced by d: Bgr — ﬁl,c ®x Bar, and by the identity map of V.
We have always

dim]c(DdR(V}) = dim@p (V) .

We say V is a de Rham representation of Gal(XC/K) if the equality holds here. If V'
is a de Rham representation, we have an isomorphism

Bag ®x Dar(V} — Bar ®q, V

which sends 3,.._, Bip @« Dig (V) onto Bl ®g, V for each n € Z. De Rham
representations are stable under direct sums, tensor products, Tate twists, duals, and
under taking subguotients. For de Rham representations, the functor Dy commutes
with the operations direct sum, temsor product, dual and Tate twists. If £ is a
finite extension of X, ¥ is de Rham if and only if it is de Rham as a representation
of Gal(Z/£), and we have £ @x Dar(V) ~— D4r(L,V) if V is de Rham where
Dar(L, V) denotes Dyr of V' as a representation of Gal{L/L).
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10.3. Let G be a p-divisibie group over O, let T be the Tate module of G, and
let ¥, = Q® TG Then VG is a de Rham representation of Gal(K/K), and there
exists a canonical iscmmorphism

DdR(VpG) = }C ®Onc D(G)
preserving the filtrations and the connections, where D{G) is the covariant Diendonné
module of G (the Ox-dual of the contravariant Diendonné module of G in [BBM]).
{As in [BBM], D(G)} has a canonical filtration such that
DG = D(G), DHG) =0,
DY(G) = coLie{G™), DG/ DG = Lie{@),

where (7* denotes the dual p-divisible group of G.)

10.4. Tor a de Rham representation V of Gal(K/K) and for any i, j € Z such that
i < j, we have (the meaning of the notation [ | below is explained soon later):

(10.4.1) HY (K, [(Bin/Biz) ®g, V]) =0 for ¢22,

(1042) [Dig(V)/Din (V)] = H(K, [(Blx/Bix) ©a, V1)
<5 WK, [(Bin/ Blir) @0, V)
where the last isomorphism is given by the product with log{Xcyelo) € oYK, z,).

The meanings of | ] are ss follows. Let (Aby) be the category of abelian groups A
satisfying the following condition {i).

(i) A is killed by some power of p.

Let {Galg ;) be the category of Gal{K /K)-modules A satisfying (i) and the follow-
ing condition (ii).

(i) For any x € A, the stabilizer of z in Gal(K/X) is open in Gal()C/K).

Then the functor

HY(K, ) : (Galg,p) — (Abp)
induces
(K, ) : ind(pro(Galx p)) — ind{pro(Abg)}
where pro{ ) means the category of pro-chjects and ind( ) means the category of
ind-objects. We define an object [Dig(V)/Dig(V}] of ind(pro(Aby)) and an object
[(Big/Bin) ®@g, V] of ind(pro(Galg )}, as follows. The equality {10.4.1) and the
isomorphisms in (10.4.2) are considered in the category ind(pro{Ab,)).

For & finitely generated Ox-module M, we denote by [M] the object “lim” M /o
of pro(Aby). For a finite dimensional K-vector space N, we denote by [N} the object
“lim” [M] of ind(pro(Ab,)) where M ranges over all finitely generated Ox-submodules
of N. This defines the object [P (V)/Dig (V)] of ind(pro{Aby)).
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. On the other hand,iet M be a finitely generated B.,(Oz/Zp)-module endowed
with an action of Gal(Xl/X), satisfying the following conditions (a) (b} (c).

{a) M is killed by JDQ(O;CM/ZP)M for some ¢ > 0. (Then we have M =
tim, M /7

(b) olaz} = o(a)o(z) for any o € Gal(K/K), & € Boo(Og/%p), z € M.

(]cllz/} The action of Gal(X/K) on M is continuous with respect to the p-adic topology
on M.

Then we denote by [M] the object © Lm” M/p™ of pro{Galk p). Next let N he

" . —
a B iRE /@P—module endowed with an action of Gal(X/K) satistying the following
condition ().

(%) N is the union of all finitely generated Boo{Og/Zy)-submodules M of N which
are stable under the action of Gal{(/C/K) and which satisfy the above conditions (a)

(b) {c)-

Then we dencte by [V] the object “Lm”{M] of ind(pro(Galk »}}.

For exampl& for a finite dimensional Qp-vector space V' endcm;ed with a continuous
action of Gal(lC/ fC),Aand fori < 4, (Big/ BéR)(@QP V satisfies the condition (+). Hence
the ohject [(Big/Biy) @q, V] of ind(pro(Galic ,)) is defined.

10.5. Let e = 0 be the_integer defined by [& : AP] = p°. Then, for a de Rham
representation V' of Gal(K/K), we define a homomorphism

exp” : HL(K, [V]) —» Coker (057 @ Di*(V)] 2 [ 9 D(V)])

‘in ind{pro{Abyp)), called the dual exponential map. Here, [V] denotes the object of
md(pro.(GalK,p)) defined to be “lm”{T] in which 7' ranges over all Gal(XC/KC)-stable
Zyg-lattices in V' and [T = “lim” T'/p™. Take a sufficiently large ¢ = 0 and consider
the exact sequence ‘

00— {BSRE/QP/B:}RJC/@,, ®q, V] — [Bin/Bir ®q, V] 4,
[k ©x Bl /B! @, V] Lo [0 @k B33/ BiR 20, V] -2 ..
(10.1.1). By (10.4.1) and (10.4.2), this exact sequence induces
(K, [BSR,E/QI,/ BgR,/C/Qp ®q, V1)
= Coleer (H' (K, [0 @ Bla” /B ™ ©0, V)
— BYK, [0 ®x Bii/Bl” ®o, V1))

= Cloker ([0 @ DIRA(V)] —— [fig @x D3(V)]).
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We define exp* to be the composite

BN, [V]) — BV (K, [Bin /0, / Bla ke, ©0 V1)

~ oe— —-e v _e —e
-— Coker ([Q;c ! R Dclm (V)] —— [Qf @ DdR(V)D-

10.6. Now we apply the above general theory to the following field X related to a

modular curve.
Fix M, N > 1 such that M + N > 5, (MN,p) = 1. Take a prime ideal p of Ziw]
lying over p, and let Z[Cylp, be the p-adic completion of Z[¢w). Let

1C = (lm (2w (™ Mg N /2™ [2/p])-

This field K is a complete discrete valuation fleld of mixed characteristics with valu-
ation ring '
Ox = lim (Z[Cwlplla ™ Nlg™"1/2™)

it
TS

and with residue field
& =Fp(w)(@™)
which satisfies [R : 8] = L.
Fix an algebraic closure K of X and fix an embedding

U ZKnllld™ — K

m,nzl R
(Cm = exp(2mi/m), ¢"/™ = exp(2wir/n) as before) over Zicn g ™).
10.7. Let & be the elliptic curve over Ok which is obtained from the Tate curve over
Z{[g)llg 1] of g-invariant ¢ (DR, VIL1]) via the embedding Zllqlllg™] — Ox. Let

E=ER0, K.
Define a p-divisible group G over Og by

G = |JKer(p® : € — €.
By the theory of Tate curves, the torsion part of & (K} is identified with the torsion

part of (Oz)* /¢* as a Gal(X/K)-module, and we have an exact sequence of p-divisible

groups over Ok
0 == (Qp/Zp){1) — G — Qp/Zp — 0

whose K-valued points coincide with

0 — (Qp/Z)1) — U »r ((0g)* /d%) — Qp/lp — 0

where v sends ¢*/7" mod ¢ to 1/p™. We have canonical isomorphisms

{10.7.1) coLie( ) 2 K ®o, coLie(G).

(10.7.2) coLie(@) = coLie{{Q,/%y)(1)} = O,

where the first isomorphism in (10.7.2) is induced from the embedding (Qp JZ (1) =G
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10.8. We introduce finite extensions K, of K and schemes Yo, over K {(m 2 0).
For m = 0, let

Ko = K(g""" o) = (m(Z[Cpgm]p,. [l g™ 1) /") [1/7)]
where pr, is the unique prime ideal of Z{(yp| lying over p. We have a morphism

(10.8.1) Spec(fm) — ¥ (Mp™, Np™)

corresponding to the triple (B ®x Km, ¢/ mod g, {ypm) over Ky Far & € Z, this
morphism induces

(10.8.2) M(X(Mp™, Np™)) = K & colie(E)®* = Ky,

where the last identification is by (10.7.1), {10.7.2). This map (10.8.2} coincides with
the g-expansgion ([IDR]). That is, the g-expansion

My(X(Mp™, Np™)) — Cllg"/™*"]
(4.9) has the image in Z[Cy,m][[¢*P" )} ® Q, and the induced map
Mi(X (Mp™, Np™)) — Ko

coincides with (10.8.2).
Let

Yin == Y (Mp™, Np™) @y (as,nv) Spec(K) for m 20

where Spec(K) ~» Y{A, N) is the case m = 0 of {10.8.1). Then Yy, is a finite étale
Galois covering of Spec(K) with Galois group GL2(Z/p™). The morphism (10.8.1)
induces an open immersion

i : Spec(Kpm ) = Yo,
and the image of the open immersion
(%2} 0im : Spec(Km) — Yo for (u3) € GLa(Z/p™)
depends only on the pair (u,w). If we denote the image by U{u, w),

V=[] Ulww
(,w}E A

where

A = {{u,w) € (Z/pm)g; u and w generate Z/p™}.
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10.9. We will consider the de Rham representations
V =M.z, Q

and Sym® 2V of Gal(X/K) for k = 2, where H, here denotes the pull back of the
Hy on Y{M, N) via Spec() — Y (M, N). (So, H} & To(E)¥—1) = Tp(G){—1).) For
1€ 4 < k—1, we have a homomorphigm
(10.9.7) exp® : H? (Yo, [(Sym* 2 V)(3)]) — [O(Yo)].
induced from the dnal exponential map for Sym®~*(V)(i) in 10.5 and from the iso-
morphism
(10.9.2) Coker{[0(¥;,) ®x Dip(Sym* 2 V)]

— [0} &x OV @ Dig! (Sym" 2 V) = [0(¥on)]
which is obtained ag follows.

First we define a canonical element goo of Boo(Ox/Zp)* as follows. For n 2 1, let
Gn = y7 € Bp(Op/Zp)* where y € B, (Ox/%y) is any lifting of the image of g*/?"
in Og/p™. Then g, is independent of the choice of y. Let

oo = (g’n)n21 c BDO(OE/Z}))X
Next we define a canonical element
£€ Dr(V)
as follows. Let £1, &3 be the basis of T, defined by
£ = (qupn mod q)'na 52 = (CP” )71.~
By writing the group law of T, additively, let

$=194® (Ge)2 Y +iog(g/gee) ® 62 ® ((pr )31V
o HD(K, Jm(Of/O}c) ®z TG & Zp(——-l})

where t is the element of J(Og/Oz,) C Joo{Ox/Oxk) corresponding to the basis
(Cpn Jn of Zp(1) {10.1). Here, since the clements g and geo of Beo{Ug/Ox)* have the
same image in Ok, we can take log(g/de} & Joo(Ox/Ok).

Finally, for & = 2, let

% e DSQQ(Symkﬁ V)

be the (k — 2)-fold product of £, We define
(10.9.3) OYm) —— Ok @ O(Y,) @k Dig (Sym* 2 V)

to be the K,,-linear map which sends 1 to dlog(g) ® €52, Then it can be shown
([KK3, §4.2]) that (10.9.3) induces an isornorphism (10.9.2).
Formz0k22,r,rcZsuchthat 1 < €k —1,let

Chia (kv #) < lim Ko(Va) — im H? (Yo, (Sym§2(F3)/6™)(k — 7))

TL

ASTERISQUE 295

p-ADIC ZETA FUNCTIONS OF MODULAR, FORMS 197

be the composite homomorphism

lim Ka(V7) — i H2(¥, (2/™)(2))
- !iLnHQ (Yo, (Sym* 2 (T,E) /p™)(2 — )}

— lim H? (¥, (Symg~*(H}) /™) (k — 1))

T

. fam
— lim H*(Y,,,, (Symz* (M) /0™ (k — 1))
ke
where:
The first arrow ig the Chern character map. The second arrow is the product with

6(18:5;." -1) ® egi:(nkfr -1} ® (g}ﬂ)@(—f‘))

where €1, €3, 15 the canonical basis of (T,E)/p™ over Y, (that is, the pull back
of the cancnical basis of T,E/p™ over ¥(p™)), and the last arrow is the trace map
associated to ¥;, — Y.

As is easily seen, the following diagram is commutative
(10.9.4)

lim KoY (Mp™, Np™)) — lim H2(Y (Mp™, Np™), (Symf 2 (HL)/p™)(k - 7))

| |

lim Ko (Ya) —————— lim 12 (Yo, (Symf~2(H1)/p)(k — 1))

Here the upper horizontal arrow is the composite of the first four arrows in the defini-
tion of Chpggm ape (K, 7, 77) in 8.4, and the lower horizental arrow is Chy, (&, 7, r"). Fur-
thermore, as we will see In § 11, the following diagram ig commutative if 1 < v’ < k—1.
(10.9.5)

lim, H2(Y (Mp™, Np™), (SymE 2 (H2)/p™)(k — 1)) — Mu(X(Mp™, Np™)) 8Ty
lim B2 (Y, (Symf2(12) /5 (k — 7)) O(¥,n)

Here the upper horizontal arrow is induced from the dual exponential map

exp® : HY {Qp, Vi, (Y (MP™, Np™ Nk — 1)) — Me(X(Mp™ Np™)) @ Q,

in (9.4.1), and the lower horizontal arrow is the dual exponential map (10.9.1).
As is explained in 10.11 below, Thio. 9.5 is reduced to

Proposition 10.10. — Let the notation be as in (8.1.1). Assumel € r < k-1, at least
one of r, v isk—1, and (MN,p) =1. Then

axp” o Chyn (b, 7, 7) (. a 2atpm pm Inz1) = c.azatpr wpe (k7,77

Jorm = 1.
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10.11. We show that Thm. 9.5 follows from Prop. 10.10 (assuming the commutativ-
ity of the diagram (10.9.5) whick will be shown in § 11}, In this 10.11, we do not assume
(MN,p) = 1. By 4.3, 4.4 and 8.7, we may replace (M, N) by (M’, N') for any M’,
N' = 1 such that M | M, N | N prime( 3"} = prime(Mp), prime{N") = prime(Np).
Hence we may assume the following: M = Mpp™, N = Ngp™ for some My, M,
m 2 1 such that (MgNg,p) = 1 and My + Ny 2 5. Hence by taking Mq and Ny as
M and N i Prop. 10.10, Thm. 9.5 is reduced to Prop. 10.10 by the commutativity
of the diagrams (10.9.4) and (10.9.5) and by the injectivity of

My(X{(Mp™, Np™)) ® @, — [JO¥m)®
P

where p ranges over all prime ideals of Z[¢n] lying over p and O(Y;,)P) denotes O(¥r, )
defined by using p as in 10.6-10.8.

In the rest of this section, we prove Prop. 10.10 by using the following result which
is a special case of the generalized explicit reciprocity law [KK3, Thm. 4.3.1].

Proposition 10.12. — Let O(G) = lim_ Oy G). Let 01, andfpn (n 2 1) be elements
of O{G)*, and assume
Np(91m+1) = 91,.,-,,, Np(gg’n_;,_l} = 192,71 fOT’ all n 2 1

where N, is the norm map O{G)* — O(G)* associated to the pull back homomor-
phism O(GY — O(G) by the multiplication by p on G. Let

Up = {Gl,n(el,n)a GZ‘n(e2,n)} € K?(Yn) for nz1
where (€1 q, €2 ) 5 the canonical basis of p» G over Yo, Then

(un}ngl S 1+'1£le (Yn).

Furthermore, fork > 2, 1< j <k~ 1, m 2 1, the homomorphism
exp” o Chm(k, & — 1,7} : limKs(Y,) — O(¥m)
sends (Un)n>1 10
—km
P d.k—j d.s
oo (=) log(B1,m)Herm) - ((Z) log(Bam)) {o2m)
where w s the cenonical Ok -basis of coLie(G) (% coLie((Qp/Zp) (1))}

Here for f € O{G)* and i > I, (g)ilog(f) means (%)inl(df/fw) with (%)i_l the
(i — 1)-fold iteration of 4. O(G) — O{@), and ((%)110g(f))(€h,m} € O(Y,,) means
the value of {%)zlog(f) at epm for h=1, 2.
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10.13. In this 10.13, we prove Prop. 10.10 in the case r = k — 1. In 10.14-10.17, we
will prove Prop. 10.10 in the case ' =% — 1, Agsume r =k — 1. In 10.12, take

91,715 92,71 « O(G)X

as follows. Let o (resp. 8,) be the unique M (resp. N)-torsion point of F(K) such '

that p™a, (resp. p™fn) is equal to ¢/ mod g% (vesp. {n mod ¢%). Let 81, (resp. 8z}
be the unique element of (¥(G)* whose image under the pull back O(F) — O(G}
by the multiplication by M (resp. N} : G == & coincides with the pull back of . fe
(resp. 40¢) by the addition € — €; 21— 2+ ap (resp. z + Br). Then

Np(el’n,.{,l) = 91’1—,, Np(92=n+1} = BQ,n for all n = 1
by the characterizing properties of ,fz and gfe in 1.3 (). Furthermore,

Hl,n(€1,n) = cG1/Mp 05 92,n(€2,n) = d80,1/Np™-
Hence for m » 1, Prop. 10.12 shows that the image of {5 qZmpe Npnlnz1 Under
exp* o Chy,(k, k — 1,7) coincides with

—km . .
() a6 () o) ) B

—km
S i~k (k=) il
= m .Y El/ﬂzfpm,o NI on,l/Npm

= c,dszijp"‘(k'ﬁ ,IC ha ]..,j)

10.14. We prove Prop. 10.10 in the case v’ = k — 1. We reduce 10.10 for the triple
(k,r,r") = (k,r k — 1) to 10.10 for the triple (r + 1,r,7).

Let (£1,£) be the basis of T, as in 10.9. Then there exists a unique Gal(K/K)-
homomorphism

(10.14.1) Sym*~3(T,G) — Sym"™ (TG © Q& Sym™ (TR6)

_
(k—2)
which sends Ef"z to E{‘l. This homomorphism is described as follows. Let
F(X.Y) be a homogeneous polynomial over Zy of degree k — 2, and let g(X,Y) =
(%)k_rﬁlf(}(, V). Then we define the image of f(£1,&3) under (10.14.1) to be
((r =1 (k= 2)1) - (61, &2)-
Since

Sym® 2 {Hp)(k — ) = {Sym* HTG)} 2 —7)
and

Sym™ HHE)(1) = {Sym™ (LG H2 — 1)
a5 smooth Zp-sheaves over Spec(K), the homomorphism {10.14.1) induces a homo-
morphism
1

7 Sym® A (ML) (k —r) — P

Sym” (M) (1) over Spec(K}).
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We have a commutative diagram

linn, T2(¥in, Sy~ (H2) 5 —r)/5) s O¥,0)
(10.14.2) Wl
fm, 2 (Yo, (g - Sy (D) ) P 0%,

Let OV, ™ be the subring of ((Y,) consisting of all elements whose restrictions
to each point y of Yo, belong 4o the valuation ring of the field @(y). Since

exp’ : im B2 (¥, Sym" ™ (H1)(1)/p™) — O(Y3)
comes from the morphism
B2 (Yo, [Sym”  (H)(1)]) — [O(Ym)]

in ind{pro{Ab,)), where [Sym“l(?—[;)(l)} is the object “lim” Symr—I(H;;)(l)/'p” of
pro(Galg o}, the image of lim  FI*(Y,,, ((1/(k — 2}) - Sym™ Y(H2)(1)}/p") in O(¥;,)
under exp” is contained in C - O(Y,, )™ for some non-zero integer (.

Eorgn = U and for (u,w) € A, (10.8), the restriction of 5 to [/{u,w) C ¥, sends
e‘ii'7 ) to u’“”r‘leﬁg*l). Hence for » > m, the projection of 5 o Chy(k,r kb — 1)
to B2 (Y, ((1/(k — 2)!) - Sym™ ™ (H2)(1))/p™) is induced from the composition of
Chum{r + 1,7, 7) with

r— T * -
W (¥, (S (/) 1))~ B2 (3, Sy D)
frace r— -

— BV, (Sym™ (K /5™))(1))
where (x] multiplies each I/ {u, w)-component by w571, Hence by (10.14.2), for any
n 2 m, exp”® e Chy (k, 7,k — 1) coincides modulo p*C - O(¥;, ™ with the composite
of exp® o Chy(r + 1, r,7) with

(x)

(10.14.3) o) s oy B, oy,

for any n 2 m, where (x) multiplies each U(u,w)-component by & "% with % a
lifting of » to Z. Hence for the proof of 10.10 for the triple (k,r, ') = (k, 7,k — 1},
gince we have proved 10.10 for the triple (r + 1,7, 7) in 10.13, it is sufficient to show

Lemma 10.15. — There exists a non-zero integer C such that the image of

e,d ZhLp N pn {T + 1: T T)

under .the map (10.14.3) 4s congruent to aazarpm ypm (kv k — 1) modulo p*C—1 .
O(Yn Y™ for anyn 2 m.
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10.16. For (%) € GLo(Z/p™),

it o (%27 (the image of cazaspr npe(r + 1,7, 7) under (10.14.3))

T wr
= Z(E’)kﬂr*l . 'i; o (:j’ ;:)*(cleﬂ,{pn,Npﬂ ('n"‘ + 1,7 T‘))

where (:3’, ;i) ranges over all elements of GLo(Z/p") whose images in GLo(Z/p™)

%), Hence for the proof of Lemma 10.15, it is sufficient to show

coincide with {4 &

that there exists a non-zero integer C' having the following property: For any (Tff, ;) S
GLo{Z/p™) and for any n = m,

(10.16.1) 42 o (X907, azarym, npm{ky 1 e — 1)
= Z(E')k_’"_l Qg o (;’, zi )*(c,dszanpn('r +1,r,7)) med p"-C7L- Ok,

For each n 2 0 and a € Z/p”, fix a lifting @ of a to Z such that ¢ = 1 mod M, and
a lifting @ of a to Z such that ¢ = 0 mod N, For n 2 m, let

k] - i
o= 3 @ 0w o (MEY  F yp vpe
(!0}
where (u/,’) ranges over all elements of (Z/p™}? whoge images in (Z/p™)? ccincide
with (¢,v}. Then by the distribution property 3.7 (2) of Eisenstein series, the right
hand side of (10.16.1)} is equal to

fn : (_]-)r ) (T - 1){-1 ) ?’::n @ (g z)*E(ng)/Npm'

m)Q

_ Since the left hand side of (10.16.1) is

'l,'.l.‘,} o (]Mrpm)icf1*72 , CF(k‘T)

; —1 * polr)
L/Rp™ 5/ Npm (71)r ! (’r - 1)1 ! (11:1 g) EGTI/Np"”

we are reduced to

Lemma 10.17. — There ezists o non-zero integer C such that
i o (Mp™F T P = fu mod p"CTE O,

for any n = m.

Proof. — In fact, we can take ¢ = p™. This congruence is a consequence of the
theory of p-adic Eisenstein series in [KN].

It is sufficient to show that the g-expansions of both sides of 10.17 coincide
mod pt ™.

Let A (resp. B) be the “without ¢ version” of the left (resp. right) hand side of 10.17.

Write
A= Z arg, B= Z b.q".
TEQ0 r&ilza

It is sufficient to prove the following (1) and (2).
(1) a, = b, mod p™ ™ for any r € Quo.
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{2) The constant terms of the g-expansions of both sides of 10.17 coincide

mod ptT™.

We prove (1). By 3.10, 30 .o, , brr ™ is equal to

(Mp™)™ > (@) MO /Mp™, $)* (0 [Np™, 8) — (=T [Mp™, s)¢™ (= /Np™, 5)).
_ ‘We have easily . .
Z C* (ﬁ"/an, 8) = pn—m—sc-* (ﬁ/Npm, S)

and the formula with v/ (resp. v) relaced by —v' (resp. —v). Hence ¥ ber s
equal to e

my—1 ivk—r— bt ™ * o~ o 7
(Mp™) ™y (@FT M Mp™, 8)C 5/ ND™, 5) — ((— [Mp™, )0 (—B/N g™, £)).
On the other hand, by 3.10,

Z apr ¢
&0
— (Mp™)F="=2{¢ i/ Mp™, 5)C"(5/N5™, 5) — C(—5/Mp™, 5)C* (=5/Np™, 5)).
ﬁence we aﬁe reduced to the elementary fact that the coefficients of the Dirichiet
serfes 3 (WY (W /Mp™, 5) and (Mp™)5~" -1 {6/ Mp™, 5) coincide mod p™ and
the same holds when v (resp. u) is replaced by —u’ {resp. —u).

Next we prove (2). By 3.10, the constant term of the right hand side of 10.17 is
equal to

(Mp™)H D @G S Mp™, 0) - o (G /Mp", 0))

= {(Mp™)" Y @) (P M, 0) — e ol /My, 0)).

On the other hand, the constant term of the left hand side of 10.17 is
(Mp™)"He CE/Mp™ 1~k +r) — 7 (i /Mp™, 1 — b +1)).

That these are congruent mod p™ ™ is a consequence of the theory of p-adic Riemann
zeta function of Kubota-Leopoldt. C

13. Modular forms and Bgp

In this .section, we review p-adic Hodge theory of modular forms, and prove the
commutativity of the diagram (10.9.5) (the compatibility of the two dual exponential
maps, one i3 exp® for the Galois representations of the local field Q, associated to

modular forms, and the other is exp* of the big local field K which is a “local field of
the field of modular functions™).
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In p-adic Hodge theory, we follow the method of Tsuji in [I'T] who uses the
syntomic cohomology (the method started by Fontaine-Messing [FM]). (In p-adic
Hodge theory, there is ancther method by Faltings who uses almost étale extensions
[Fall-[Fad].) ’

11.1. Following Scholl [Scl], we identify various cohomology groups associated to
modular forms with direct summands of cohomology groups of Kugs-Sato varieties.
We review Kuga-Satc varieties.

Let k 22, N =3, :

Let E — Y{N) be the universal elliptic curve, and let E%-2) (= “the open Kuga-
Satc variety” of weight k) be the (k — 2)-fold fiber product of B over Y{IN).

Let £ — X(N) be the universal generalized elliptic curve with level N structure
[DR]. Let B2 — X(N) be the (k — 2)-fold fiber product of E over X(N) and let
K8 = KS,{V) (the Kuga-Sato variety of weight k) be the canonical desingularization
of B9 constructed by Deligne in [Del, Lemma 5.4, Lemma 5.5].

Then E*~2) is open in K3, and the complement of E®-2) in KS;, which coincides
with the inverse image of the set of cusps of X (IV), Is & divisor with normal crossings
in KS.

11.2. We review the relation of Kuga-Sato varieties with meodular forms.

Define a finite group G which acts on E-2 gand a finite group & which acts on
K8y, as follows.

Let Bg_o be the symmetric group of degree k—2. Let & be the semi-direct product
of the two groups Sg—s and {+£1}*2 in which {£1}*7* is normal and the action of
&j_3 on {=1}%~2 by inner automorphisms is given by the canonical action of Gr_g
on {£1}*~2 by permutations. Then & acts on E¥*2) gg follows: {+1} acts on B
by multiplication, and hence {£1}*7% acts on B and Gp_y acts on BF2) by
permuting the factors of the fiber product.

On the other hand, let G be the semi-direct product of G and ((Z/N 12)5=2 defined
as follows. ((Z/N)2)*~2 is normal in G, the action of {£1}52 on {(Z/N)*)*? by
inner awtomorphisms is the one induced by the natural multiplicative action of {£1}
on (Z/N)?, and the action of G2 on ({Z/N)*)*=? by inner automorphisms is by
permutations. Then 7 acts on K Si as follows: &g _n acts by permutation, the actlon
of {£1}*"? is induced by the action of {:1} on £ by multiplication, and the action
of ((Z/N)?)*~2 is induced by the translation on E by (Z/N)? ({Z/N)® is embedded
in the smoath part of E by the N-level structure of E)

Let s : G — {+1} be the homomorphism whose restriction to {+1}%72 (resp. Gr—s)
is the product map (resp. the sign function).

Let £: G — {+1} be the composition G — G 5 {+1}. For a G-module {resp. G-
module) M, let '

M{e) (resp. M(E) ) ={z €M oz = g{a)x (resp. Elo)z ) forall o € G}
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Then we have the following (11.2.1)-{11.2.6). (11.2.1), (11.2.3}, (11.2.5) are shown
in Scholl [Scl], and {11.2.2), (11.2.4), (11.2.6) are shown in the same way but more
easily.

We have canonical isomorphisms of Q[Gal{C/R)]-modules

(11.2.1) Vi(X (V) = B* 7 (KS(C), Q)(E),
(11.2.2) Vio(Y (V) = BFHEFH(C),Q)(e),
which induce isomorphisms of Q,[Gali/Q)]-modules

(11.2.3) Vi, (X(N)) = B (K5, @ T, ©p)(3),
(11.2.4) Vi, (Y (V) S HHESD 90 @, Q) ().

(Gal(Q/Q) acts on Vi q, (X (N)) = Vi (X (1 ))®QQp, since it is identified with the étale
cohomology group HY(X{N)®q Q, . Sym *(HL)) ®z, Qp where j is the inclusion
ma.p Y(N)— X(N))
| Let Q%5 qllog) be the de Rham complex on KS; with log pole outside B(5=2),
\ and denote for m = 0

!

HEg—dR(KSk) = H™ (K&, Q;{Sk/Q (1Og))
I HT, 4p(KSk) = H™ (KSy, Ay salog))-

Then (Hjy denotes the usnal de Rham cohomology),

HEMKSO(E) i i<,
(11.2.5) G HER (KS:)(E) = § Su(X(V)) iflsigk—1,
0 ifizk
HiZ! 2 (KSLE)  i#4<0,
(11.2.6) B HE Y (KSK)(E) = { ML (X(N)) Flgigk—1,
0 fizk

(The action of & on K, _sr(KSy) factors through . This follows from (11.3.2)
below.)

11.3. By comparison theorems of Betii cohomology and de Rham cchomelogy over
©C, we have for any m

(11.3.1) H™ (K8 (C), Q) 2 C ~ HfL (KS) 2 T
(11.3.2) H™(E®2(C),Q) © C ~ HY, _4n(KSk) @9 C
The homomorphism

M(X(N)®C — WY (N)ecC

induced by (11.3.2) (we take m =k — 1) via (11.2.2) and (11.2.6) coincides with the
period map in 4.10.
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By Tsuji [T'T}, for any m, H™{KS; @g Qp, @) is a de Rham representation of
Gal(Q,/0Q,) and we have a canarical isomorphism preserving filtrations
(11.3.2) Dar (H™ (K8 ®@;1 Qp)) = HiR(KS8k) @ @y

which is the p-adic version of (11.3.1). Form m = k — 1, this gives by {11.2.3) and
(11.2.5)

DdR(Vk,QP (X(N))) If i é 0,
(11.3.4) Dig(Vig, (X(N)) = S SL{X(N) 9 Qp flgigk-1
0 ifi =z k.

By [TT], we have also a canonical homomorphism
(11.3.5) Dur(H™E¥ ™ @0 @y, Q) — My an(KSi) © Qp
which is compatible with (11.3.3} and with filtrations, and which is the p-adic version
of (11.3.2). See 11.4 for the constructions of the isomorphism (11.3.3) and the ho-
momorphism (11.3.5). Unfortunately, [T'T]does not contain results which show that
(11.3.5) is an isomorphism. In (11.10}, we will show that the homomorphism (11.3.5)
for m =k — 1 induces an isomorphism
(11.3.6) Dar(E*H(E® @9 Ty, @p))e) — T L (K8:) () ® Qs
preserving filtrations. (Hence by comparing the dimensious by (11.3.2), we have
that Viq, (Y(N)} = H*"Y{E%*2 @g Q,,Qu))(c) is a de Rham representation of
Gal(Q,/Q,).) The isomorphism (11.3.6) gives by (11.2.4) and (11.2.6)
DdR(Vk,QF (Y(IV))) if 1< O
M{X(NY)®Q, figigk-1
] ifi 2k

(11.3.7) Dip{ Ve, (Y (V) =

In [Fa2, Thm 8.1], Faltings has a result “Dgg of the p-adic étale cohomology of
an open variety is the de Rham cohomology with log poles” which gives a canonical
isomorphism between the two groups which appear in (11.3.5). He uses the method of
almost étale extensions. But we formulate in this section everything in the method of
syntomic cohomology by Fontaine-Messing-Tsuii (this is because the author is familiar
with syntomic cohomology and not so much with almost étale extensions). We use the
definition of the map {11.3.5) given by the method of syntomic cohomology, and prove
the bijectivity of (11.3.6) in 11.10 by the method of syntomic cohemeology, and avoid
long arguments to check the relation between the method of Fontaine-Messing-Tsuji
and that of Faltings.

11.4. We review the methods in [TT] and see how the isomorphism (11.3.3) and the

hemomorphism (11.3.5) are constructed as special cases of general results in [T'T).
Let K be a complete discrete valuation field of mixed characteristic (0,p) with

perfect residue field, and let X be a proper semi-stable scheme over Ox (that is, X is
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regular, the generic fiber X g of X is smooth over K, and the special fiber of X is a
divisor with normal crossings), and let U/ be a dense open subscheme of X such that
{X ~ Ulred is a divisor of X with normal crossings. (In the application, X will be an
integral model of a Kuga-Sato variety, and U7 will be a Kuga-Sato variety or an open
Kuga-Sato variety.)

For integers m,r such that 0 < m < r, we have a canonical isomorphism [TT,
Thm. 0.5]

(11.4.1}) H™ (X ®o, O, Sgi(r)) = H™{U @k K, Qy)(r)

between the log syntomic cohomology of X @, O (the left hand side) and the p-adic
étale cohomology of U @ K (the right hand side).
Here

H" (X 80, O, S (r)) = Qp ©n, i H™(X ®o, O Salr)x)
Tu

with gn(r)y the syntomic complex on X = X @0, O«/p" defined with respect to the
canonical log structure of X ®e, Og/p™ which is induced by the log structure of X
agsaciated to the divisor (X ~ U)rea and the canonical log structures of Spec{O) and

Spec(Ox ). On the other hand, for integers m,r = 0, we have a canonical homomor-
phism [T'T, 4.8}

(11'4.2) Hm(X Bok O?r gn(r)f)
P 5 e (((X ®OK OR—/pn)/(OK/pn)) J’[”'] )

log—crys’ ~ cTys
where log-crys means the log crystalline site with respect to above 1og‘ structure of
X @0, Ox/p™ and the canonical log structure of the base Spec(Cx /p™), and Jc[g,s
denotes the r-th divided power of the ideal Kee(Ogys — Ox ) of the structure sheaf
Oerys of the log crystalline site. We have a canonical isomorphism [T'T, 4.7.6]

(1143)  fmQelim ™ (X @ox O/0™)/(Ok/5™) sy cayer Ooxred Tk

~ Bag ®x Hipoar(Xx/K)  (Bir = BIR,?/ K= B:R,F/Qp)'

By (11.4.1), (11.4.2), (11.4.3), we have a canonical homomorphism
(11.44) H™U ok K,Qp) = H™(X Q0. O, SgF(r)}{~r)
— Bar @x H; _an(Xk/K) (Bar = Byp m/r = BdR,R_/QP)'

for » = 'm, and this map is independent of the choice of r > m and commutes with
the action of Gal(K/K}. By taking the Gal{K /K )-invariant part of the induced map

(11.4.5) Bar ®q, H™(U ®x K, Q) — Bar ®x Hiy_ar(Xx/K),
we have a cancnical homomorphism
{11.4.6) Dar(H™ (U ©x K, Qp)) ~— Hige_an(Xx/K)
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Tsuii proves in [T'T] that in the case of U = Xx, the maps (11.4.5) and (11.4.6)
are bijective and induce isomorphisms of filtrations.

The isomorphism (11.3.3) and the homemorphisms {11.3.5) are obtained from the
above general theory as follows (we follow [Sal]). Take a multiple N’ of N such
that the genus of X(N') as a curve over Q((n/) is 2 2. Let (V') be the fine
moduli space over Z of generalized elliptic curves with N’-level structures [KM].
Then X¥(N') is a proper flat curve over Z such that X(N') @z Q = X(N'). Take -
a finite extension K of Q" which is Galois over @, such that X (N') @g K has
semi-stable reduction. Let € be the minimal semi-stable model of X (N') @ K over
Ox. By the assumption on the genus, € is the minimal desingularization of the
normalization of E(N') in X(N') ®¢ K. Let & — ¢ be the base change of the
universal generalized elliptic curve over X(V), let X be the canenical desingularization
by Deligne of the k — 2 fold product of & over € (see [Sal, p.610]). Let U = Xx
(resp. U = E¥=2) %y Y{N') ®g K). Then, X is proper semi-stable over O, and
{X ~ U)seq is a divisor of X with normal crossings. By appiying the above general
theory to (X, U/}, and then taking the Gal(K/Q,} x Aut(X (N')/ X (N))-invariant part
of {11.4.6), we abtain the isomorphism (11.3.3) (resp. the homomorphism (11.3.5)).

11.5. The theory of Tsuji can be generalized to the case the residue field &k of K is
not necessarily perfect as follows, without essential changes.

Let K, X and U be as in 11.4 except that we do not assume here that the residue
field & of K is perfect, but we assume [k : k7] < oo.

For integers m,r such that 0 < m < r, we have a canonical isomorphism

(11.5.1) H™(X @0y Op Sge(r)) — H™(U ®x K, Qp)(r).

" Tu fact, the canonical map from the left hand side to the right hand side is defined in

the same way as in [T'T], and the bijectivity of it is reduced to the perfect residue field
case, for we have an intermediate feld K’ such that K ¢ K' < K which is a henselian
discrete valuation field with perfect residue field. (In fact take a lifting (h;); of a p-
base of the residue field of X to Ox, and choose a p™-th root b, of b; in F for each i
and n > 0 satisfying & ) = b for all ¢ and n 2 0. Then K' = K(b;n; Vi, ¥n 2 ()
is such a field. The completion of a henselian discrete valuation fleld K’ does not
change the log syntomic cohomology and the p-adic cchomology for X, U over Og:
ag above.)

Remark. — The log crystalline site which is used here for ihe definition of gn(r)y
is (X ®og Og/p™)/(Z/P"iog—crys With respect to the canonical log struc-
ture of X @0, Ox/p" and the trivial log structire on the base Spec(Z/p™).
In the perfect residue field case, Tsuji uses instead the log crystalline site
(X ®ox Og/P™)/ Wi liog—crys where Wy, is the Witt ring of the residue field of
K with length n, with respect to the cancnical log structure of X ®¢y Oy /p™ and
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the trivial log structure on the base Spec(W,,), but these two log crystalline sites give
the same Sp(r)+-

We have canonical homomorphisms
(11.5.2) H™(X R0 Ofrfa g‘n(ﬂf) — Hm((X Box Of/Pn)/(Z/pn))lcg—crym Jéﬂs)
— H™ ((X B0y Of/pn)/(ox’{/pn))bg—crysa J(E:LS)

for integers m,r 2 0, and an isomorphism

(115.3) ImQ® EmB" {(X ©o, O/p™)/(Ok/8") 0y orger Ousse/ s
= BIR B H'—lnolg—dR(XK/K) (Bd+R = BIR,?/K)’

which are obtained in the same way as in the perfect residue fields case.
By (11.5.1}, (11.5.2), (11.5.3), we have a canonical homomorphism

(115.4) B™(U @x K, ) = B (X @0, O S5E(r)){=r)
— Bar @x B ,_ar (Xx/K)  (Bar =Byr 7/x)

for v 2 m, and this map is independent of the choice of r and commutes with the
action of Gal(K/K). By taking the Cal(K /K)-invariant part of the induced map

(11.5.5) Bar ®g, H™ (U @k K,Qp) — Bar ®x U, _an( Xk /K),
we have a canonical homomorphism
(11.5.6) Dar(H™(U @x K,Qp)) — Higoan (X /K.
Via (11.5.8), the counection
V: Dap{H™(U &x K, Qp)) — O @ Dyr (H™(U @5 K, Q,))
in 10.2 commutes with the Gauss-Manin connection
Hoearn(Xx/K) — (O 5 Higg—arn(Xx /K.

This is because the image of H* (U@ K, @,) in Bar®xH, 4r {X#/K) is contained
in the kernel of ¥ ® 1+ 1® V as is seen from the factorization (11.5.2).

By the same method as in [T'T], we can prove that in the case I/ = X, the maps
{11.5.5) and (11.5.8) are bijective and induce isomorphisms of filtrations. (We will
use this fact only in the case X is a product of finite copies of an elliptic curve of good
reduction over O .)
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11.6. We consider an interaction of 11.4 (the perfect residue field case) and the case
[k : kP] = p in 11.5, which will be used for the proof of the commutativity of the
diagram (10.9.5).

Let K, X, U be asin 11.4. We agsurne here that the residue field of K is algebraically
closed. Let ¢ be a proper normal curve over O, let X — C be a morphism over
Ox, and let ¥ be a generic point of the special fiber of C. Then the local ring O,
is a discrete valuation ring whose residue field & satisfies [R : A7) = p. Let ¢ be the
field of fractions of the completion of Op . Asswme that K is algebraically closed
in ¥, X @c Ox is smooth over Ok, and that

X@oOx =U®c0u.

{(In our application in 11.8, X will be an integral model of & Kuga-Sato variety,
U will be an open Kuga-Sato variety, and € will be an integral model of a medular
curve. In that case, X @2 0.y = U ®c O and this scheme is the (k—2)-fold product
over O of an elliptic curve over O of good reduction.)

Form = 0, let

HY = H™(U ©x K, Qy), & =Higg—ar (X /K),
HE =H"™U Q¢ 7, Qy), HE o = HiR(X ®¢ 2 /4).
By 11.5, HE is a de Rham representation of Gal(.# /.#7), and Dar (HE) = HE e
Fix an integer £ 2 0. Assume we are given a de Rham representasion H¢ of
Gal{K/K} contained in Ker(H! — H%). Let HY = Dgr(HS). (In our application
in 118, we will take £ = k — 1,HS™" = HEe), HE ™ = HY (), where (2) is as in
11.2)
In the following, we express by [ | an object of ind(pro(Ab,)) or of ind(pre{Galy )
as in 10.4. In Prop 11.7 below, we will compare the two dual exponential maps :
exp” - HYNI, [HY (r))) — [A7ES,
exp” : B2 (¢, [HE 1 (r)]) — [Q @x 87 HE L /VIETES L |
for r € 2.

Proposition 11.7. — For any r € Z, the following diogram is commutative.

HY (K, (] (7)) i HE ]

y * I

- €Xp ] — - Ty
B2, (15 () [ @ 7 THE L 1/ VIETHS L

Here the maps « and 5 are defined as follows.
First we define «. Since J£ is the completion of a henselian discrete valuation
field which is of transcendence degree 1 over K, the composite field K% in o7 is of
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cohomological dimension 1 [Sel, Chap.IL§3.3]. Hence we have an exact sequence
0 — [EEA HE Y] — (U @x B, Q) — [HE).

Since the image of Hﬁ, in A% is zero by ow assumption, we have a map
[HE) — [H' (K¢, H5 ™)), and hence a map

H(K, [HE]) — B HY (RS [HE 1))

Since the residue field of K is algebraically closed, the cohomological dimension of K
is 1 [Sel, Chap.II, §3.3] as well as that of K # . and hence we have for any m

HY(K,H! (Ko, [Hg 7 (r)])) — B2, [Hp ™ r)])-

. Hence we have the map a.
The map 3 is defined as follows. For any m, let

HE x = K @0, ImH™(X @c O, Qg0 /0x 1081 ")

AITHE = K ©o, ImH™(X @c O, U g 0,370, 102)/07):

n

(note that the base of the differential here is Ox and not O o). Then we have long
exact sequences

1T T V Fa me
L= HE e — HE o —— Ol ®u Hp
iz ™ V A
HD?}I( HDj-Jlf QJL” B HD/A’ ?
and

L BUH ) — SUHETL s GO @ T THE L

s RTHE, e — 6ITH Ly — s Oy ® AU TTHE, o —

Since the composition Hﬂ, — Hfl — H‘E/K - HED/X is zero (for it is the Dyg of the
zZerc map H’-’ — HL), the last long exact sequence gives the map 5.

11.8. Let K, X,U = (B2 xy(y) Y(N')) ®g K be as at the end of 11.4, and let
C be the scheme € at the end of 11.4. Let ¢ = k& — 1, HY, = H¥ (U @x K,Qp)(e) =
Vig,(Y (N'}). Then Prop.11.7 in this case proves the commutativity of the diagram
{10.9.5).

11.9. We prove Prop. 11.7.
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For an integer 5 2 r and for m = 0, let

= I LT /B
THE = AIHY /AI0HE,
5 = A1"(Byp 7/ 5 @5 HE )/ Bag 71 ®x HY')
=l Q ® W 1™ ({(X ®or Ox/s")/ (Ox/3") T TN (=),
J

log—crys’ "—"-'3"5

SHp = BSR,T{'/K/ Binz/x @ H,

= "By 7, @ Ha)/A (Byg /1 O HY),
JHE 5 = AT Hp o /AIHT i,
HY 5 = 8THE 5 /AIPHE

HE =l Q6 m " (X 6 O5/5™)/ (O /7)) g —enywr T T ) (=

U5 = Bir 70/ Bin 70 € U,
=81"(Byp 7/ ®or HE )0 )/ 8 (Bug 277/ S HE v )
— lin @ © lim H™ (X ®c O%/p™) /(0 /7)) TP I ().
i n

log—~crys? ~ Crys rys

For s 3 D, the upper (resp. lower) exp* in 11.7 is the composition of the upper
{resp. lower) rows of the following diagram.

HY(K, [HE (7)) HY(K, [[H]) +— [HS ]
(11.9.1) ozl l Lﬁ
HA (2, [H  (r)]) — B2, TR ) «——— P+

Here

P =H'(K, [ @ t21HE L)/ VE (O [THE L),
Q= 07 IH%/%,{]/V([ZHED/IJK})J

the map 4 is the connecting map of the exact sequence
\
(11.9.2) 0 — [H %] — [HE 5] —— (B o THHE ] — 0,

the middle vertical arrow is induced by &, and the two horizontal isomorphisms on
the extreme right are cup products with log(xeycio). For the proof of Prop.11.7, it is
sufficient to prove the commutativity of the two squares in (11.9.1). The commuta-
tivity of the right square is clear. The left square is divided into three squares as in
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the following diagram.
{(11.9.3
ENEK [ () H' (K, [[H])

| |

B (i (R [0 ) ) — 10t (K18 (R, GBS A ) O HUK,R)

| |

B2 (0, (B (n)]) — B (R ) ¢ P

Here P and the lower 4 are as above,
R=H"(EX, [0 ou 111 He o)/ V ([ (R, [HE L D),

the upper 4 is induced by the connecting map of (11.9.2), and the lower vertical arrow
on the right hand side is defined as

F'(K, R) = H' (K, (K., [, @ 1HS D)) /VH (K, BY(EK, [THE ) — P

The commutativities of the lower two squares in (11.9.3) are clear. Tt remains to
prove the commutativity of the upper square of (11.9.3). This square is (X, ) of
the following square

[HZ ()] > [HE]

(11.6.4) l | l
5

HI (Ko, [Hp ™ (r)]) —— HH{EH [ ) % R

Let f,g: [HMr)) — HY{EX,[ B/K]) be the two morphisms defined by {11.9.4);
is the composition of the left vertlclal arrow and the lower horizontal arrow on the lefs
hand side, and g is th composition of the other arrows. Let

heHY (Ko, [[HE2]) — B (KA, [(RT 5 x])
be the canonical injection, where

(11.9.5) [RIpg]
_ ::Q &7 :«.IIE;-: “1}_21” RF(((X @c Oy/pn)/(OK/pﬂ)) B T‘+J]/J£§;‘$J])(._j)’

log—crys® © CIYS
7 n
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(“Q®" means “ lim M~'Z ® ) The composite ho f (hog) coincides with do b o i
(= ¢oaoi) of the following commutative diagram

[HY ()] ———— [B(r)] ——— 2 [

| [
[ (R4, RI's)) —L [BEKH, R
where RI'g = “Q®” “lim"RI(U@c %, Z/p"). Hence hof = hog and we have f = g
by the injectivity of A.
11.10. We give the proof of the bijectivity of (11.3.6). Let
De(X (V) = B (KSu) (@), Diteg(X(N)) = HEZL o (KSi)(e).

Our task is to prove that the canonical map
(12.10.1) Dar(Veg, Y (N))) — Diog(X(N)) @ G,
is bijective. By (11.3.3), we have

Dar Vi, (X (NV))) — Die(X(N)) @ Qp.

By comparing the dimengions by (11.3.2), we see that it is sufficient to show that
(11.10.1) is an injection.

We define a homomorphism of Gal{Q/Q((y))-modules
B:Vig, Y(V) @Q — Qpl{l — k)
and a homomorphism
Res : Dy g (X (V) — Q{{n)
as follows. First, R is the composition
(Y (V) @, Sym*~2(Hy)) — (R'5. Sym§ > (H2))z © Qp - Qu(L — k)

where the Jast isomorphism is defined as follows. Let 7 = Q(¢wv)({(¢™")). Since the
pull back E of the universal elliptic curve over ¥ (N) to Spec(L) is the pull back of
the g-Tate curve over Z[[g]]lg™!], we have an exact sequence

0— Q) 2 TLERQ—Q,—0

of Gal(L/L}-modules in which T,F' @ Q@ — Q, sends (3%/?" mod ¢%),, to 1. This
induces a homomorphism of Gal{L/L)-modules

Syngz(TpE) — Qy,
and hence a homomorphism of Gal(L/L}-modules

Symgf(’){é) — (2 — k).
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This induces isomorphisms of Gal{Q/Q((n))-modules
(R, Symé?(H3))ss ® @ = H (L™, Symy ()} © Q
L HY LR, Qpl2 — k) — Qp(l — k)
where the last map comes from the isomorphism of Gal(Q/Q((n})-modules
Qp > HY (L™, Qp(1))

which sends 1 to the image of g under the symbol map (Kummer theory) (L")* —
H'(L",Qy(1)}. This gives the desired map

(RYj. Symf () — Qpll — F)-
Next Res is the composition
D aog (X (N))/ Dr(X(N)) = M(X{N))/Se{X(N)) — QlCw)
where the last arrow is defined by 3.~ g™ N

We will show that the following diagram is commutative.

Ve, (V(N)) — 5 Q,(1 - &)

(11.10.2) L
Res

Bar @g Driog(X (N)) —— Bar

— Q.

{This is a p-adic analogue of the commutative diagram (7.15.1).) We prove the bi-
jectivity of (11.3.6) admitting the commutativity of {11.10.2). We have an exact
sequence of Gal(Qp/Q(¢N))-modules

(11.10.3} J— Vk,Qp (X(N]} - Vk!QP (Y(N)) —_ @Qp(l e k)

where o ranges over all elements of GLa(Z/N) and the last arrow is (Roo*),, and
an exact sequence

(11.10.4) 0 — Bar @ Di(X(N)) — Bar @ D 1og(X(N})) — D Ban

where o ranges over all elements of GLy (Z/N) and the last arrow is (Res og*),. By the
commutativity of (11.10.2), we have a homomorphism Bqr ®q, (11.10.3) — {11.10.4).
By taking T%{Q{(y) ® Qp, ?) of this, we abtain a commutative diagram

0 —— Q) ®g (1) —— Qdn) @g 2) — B, QW 0 Qp

I

0 —— Q(Cx) @g (1) —— Qly) ®g (2) — B, Q) ® Qp
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where

(1) = Dar(Ve0, (XN},
(1)) = DR {X(N)) & Uy,

(2) = Dar(Vio, (Y{N))),
(2) = D10z (X{NV)) ® Qp.

Since (1) ~~= (1), this diagram proves the injectivity of (2) — (2) as cesired.

Now we prove the commutativity of (11.10.2).

Let €, be the completion over Qp. Sinee Gal{@/Q(¢y)) acts trivially on
Vi, Y IND)/{Vie,0, (X(N)))(k — 1) and since Res : Bap ®g Di,log(X(V)) = Bar
kills the image of Vi g, (X (V)), the image of the composition

Vise, (Y (N))(k — 1) — Bar ®@g Dy 1o (X{N)) — Bar

is contained in HY{Q,(¢x), Bar) = Qp({x). Since Byz — Cp induces an injection
Qp(¢n) — Cp, it is sufficient to prove that the diagram

(11.10.5) Vi, YNk —1) —— B 0,

l |

G141 (B, @ Dy sog(X(N))) — 12— C,

is commutative. The lower horizontal arrow factors as
8157 (BIR @ Dijog(X (V) — gt (Big ® Dy jog(X(N)))
- €, 8¢ Mu(X (V) R ¢,
where the last map Res is Z anq"/N = g.
We will define certain gI"‘iO;l‘lJpS V. V' D, D' with commutative diagrams
Vig, YNk —1) —= V —— V7

{11.10.5) J' Dlogl lDl{)g

Cp &g Mp(X(N)) —— D ——D/

Qp __'U_} v
(11.10.7) l lDlog
Cp — 1y

such that the composition of the upper horizontal rows of (11.10.6) coincides with the
composition

Ve, YN}k —1) Ao, v,
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the compuosition of the lower horizontal row of (11.10.6) coincides with the composition
Res w !
Cp ®g Mp(X(N)) —— C, — D',
and w is injective. This will prove the commutativity of (11.10.5).

The groups V, V', D and IV are defined as follows. Let N, K, X, U = Et-1) Xy (N)
Y{(N') ®@g K, and € be as at the end of 11.4. Let Spec(Ox) — € be the standard
cusp. Then the completion of the local ring of © at the image of the closed point
of Spec(Of) under this map is identified with Ox{lg/™']]. For any n 2 1, the
smooth part of the irreducible component of X x¢ Spec(OK[[ql/Nf]}/(q”)} containing

.. . . . . . k-3
the origin of X is canonically identified with Gm,OK[[qUN'H/(q”}' Let {t;)1<jch—2 be
the standard coordinates of G¥72, and let R be the complesion of the local ring of
OK[tli, cen tf_g] at the prime ideal generated by the maximal ideal my of O . Then
R is a discrete valuation ring, Let v be the generic point of G:;gK Jmx and regard v

as a point of codimension two of X. Then the completion of the local ring Ox,» 18
identified with R[[g/¥']]. Let O% , be the henselization of Ox... We define

V =@, g, ImH* (0% ,[1/d] ®0x K, (B/2™) (5~ 1)),
V' = Qp @z, lm B (Frac(R) (¢ ) o K, (2/p7)(k ~ 1),
D = Q, ®s, im(Og oy Rila"/™ /2™

D' =Qp @z, @(Of @ow B)/P"s

where frac{R) denotes the field of fractions of R.
By [T'T, §3], there is & unique homomorphism

Dlog: V — D
satisfying
Diog({f1, -, fe_1})-dlog{t) A+ - Adlog(ty—2) Adlog(g) = dlog(fi)A- --Adlog( fe—1)
in
O &2, i (O @ox ™ gm0,/ ")

— Q, ©, Im (O ®o, Rlla/V1}) /") @ dlog(ta) -+~ A dlos(ts2) A dlog(a)

T
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forany fi, .., fe-1 € (0% , @0y K)*, where {f1,..., fr—1} is the image of 1@+ ®
- under the symbol map [TT, §3.2]. The diagram

Veg, YINDE—1) — v
Dilog
Cp ® Mp(X(N) — D
is commutative. On the other hand, let
Dlog : V' — D
be the homomorphism characterized by
Dlog({fl, U fkflq}) . dlog(il) FANCRRIAN diog(fkfg) = dlog(fl) A A dk)g(fkfg)
in
Q;u ®Zp @((Oﬁ? ®OK Q%?éK)/p”‘)
n

=0, @, Im{Ox @, 1/p"} @ dlog(t:) A --- A dlog(te-2)

"

for any fi, X o Frez € (frac(R) @o, K)*. (The existence of this map Dleg follows
from the bijectivity of the symbol map
(11.10.8)

K (frac(R)(¢"/™") @k E) /p™ > BF L {frac(R)(dY") ok K, (@/p")(k - 1))
which follows from
(11.10.9) KM(frac(R) @k K) /0" —= H' (frac(R) ®x K, (Z/p™)(r))

for all » [BK1] because (11.10.8) is isomorphic to the direct sum of {11.10.9) for
r=%k—1,k—2 From the constructions of the maps Dlog, the diagram

V—V
Dlogl J'Dlog
D—D

is commutative, where D — D' is given by 3, ang™™' > ag. We define the map

ﬂ'u : Q? — V' by sending 1 to {t1,..., 42,9} and the map w : C, — D' to be the
inclusion map. The diagram

@p_‘u._>v.'

j' j{Dlog
Cp s p

is clearly cornmutative.
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It remains to show that the compositions
Vi, YNk -1)—V — v
Vi, (Y (V) = 1) 2 0 - v

coincide. This follows from the fact that if E' is the pull back of the ¢-Tate elliptic
curve over (g}, the following two compositions

~ — a
Tyl W (E @ Qe Zoll)) 2= TG, 3, 2 (1)),
7,8 2oz, S BYE,, 5 %l(D)
coincide. Here a is the restriction to the smooth part of the irreducible component of
the special fiber of B containing the origin (this part is isomorphic to Gm), b is the
homomorphism which kills Z,(1) and sends (¢?" mod ¢¥)s to 1, and ¢ is the map
which sends 1 to the symbol {t} where ¢ is the standard coordinate of Gm.

CHAPTER III

IWASAWA THEORY OF MODULAR FORMS
(WITHOUT p-ADIC ZETA FUNCTIONS)

Tn this chapter (§12-§15), we study the following subjects:

(1) Analogue of Iwasawa main conjecture for modular forms (812).

(2) The finiteness of Selmer groups (§14).

(3} The Tamagawa number conjecture [BK2] for modular forms (§14).

The “main conjecture” which we study in this chapter is not concerned with p-adic zeta
functions of modular forms. In the next chapter, we will study the main conjecture
involving p-adic zeta functions [Mal, Grl] for modular forms which are ordinary
at p. :

It has been known that once p-adic Euler systems as in Chapter I are constructed
and the result in §12 is obtained, then the rest of Chapter 11 and Chapter IV can
be proved (see [Pel], [Pe3], [Rud]). The author gives in this paper all necessary
argumerss, for he thinks that is convenient for the reader, but many arguments in
Chapter 111 and Chapter [V are already given in literatures. The author is thankful
to the referee for pointing out the existence of several literatures.

In Chap. IIT, we fix k 2 2, N 2 1, and a normalized newfarm

f= Zn}l ang” € Sk (.Xl (IV)) ® C.

We denote by Q the algebraic closure of @ in C.
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12, The main conjecture, I

In this section, we state results concerning “the main conjecture without p-adic
zeta functions” (Conj. 12.10) for modular forms. The proofs of the resuits are given
in §13,815.

We fix a prime number p.

12.1. Let p be a prime number, and let

Grn = Gal(Q(-)/Q) for n 2 0,
Goo = %%HGW, = Gal(Q((p=)/Q)  where Q((peo ) = UnG{pn ).
Then the cyclotomic character gives an isomorphism
£ = Xeydo : Goo — Ly -
For e C Z7, let 0. © Goo be the unigue element such that (o) = c.
For a linite extension L of Q,, the ring

Orl[Geo]] = Im O Gl

n

has the following structure, as is well kmown. Let A be the torsion part of G, and
let

ol o= {o € G ; w0} =1 mod p} in the case p #£ 2,
= {o € Guo; k{e) =1 mod 4} in the case p= 2.
Then
Goo =Gl x A, Gl =7, A Zip—1) iEp#2,
Z/2 fp=2.
We have

Oz[[Geo]l = OL[[A x Gl = O[ANGL]] = OL[A([Z,]]
= lim Oz [A][Z/p"] = lim O {A][X]/{(X?" ~ 1) = Oz [Al[{T]]

k(3 n

(I'= X —1). Hence we have:
(121.1)  O:l[Gsl] 45 @ two dimensional complete semi-local ring.

(121.2) In the case p # 2 (resp.p = 2), for 5 € Z/(p—1) (resp. j € E/2), let
Op[[Goolls be the quotient of Op[[Goo]] divided by the idenl (o — s(o);0 € A). Then
O1[[Caoll; == OL{IGL]) = OL[[T]].

We have
Opl[[Geell = [ OullGull; irp #2.

JEZ/{p—1)
If p =2, the canonical map Op[[Gul] = [1;ca/3 OLlGoll; is injective and the cok-
ernel is killed by 2. N . .
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(12.1.3)  Op[[Ceol] @ Q is the product of the principal ideal domains Op[[Gxll; 2 Q.

(12.1.4)  Ifp is o prime ideal of height one in Or|[Geoll, the local ring OL[Gollp 48
o discrete valuation ring except in the case p =2 € p.

12.2. Let T be a finitely generated Z,-module endowed with a continucus action of
Gal(Q)/Q) which is unramified at almost all prime numbers. We denote for g € Z

HY(T) = lim T{Z[Cp», 1/p], T)

T

where HY is the étale cohomology as in 8.2, and the inverse limit is taken with respect
to trace maps. The following are known:
(12.2.1) HYT) = 0 if g # 1,2 ond HYT) and HYT) are finitely gencrated
Zy{[Goal]-modules.

(12.2.2)  For any prime ideal q of Zp[[Guoll of height 0 (50 Zy[[Goollq is a field),
dim{H(T},) — dim(H*(T),) = rankg, (T) where T= s the part of T on which the
complez conjugation acts by 1. ([Ta2, Thm. 2.2}, [Pe3, §1.3]).

It is conjectured that TI2(T") is always a torsion Zy[[Gooll-module {{Pe3] Ap-
pendix 3: conjecture de Leopoldt faible}, and hence (by (12.2.2)} that dim(HY(T"),) =
rankg, (T'~) for any prime ideal q of Zp||Goa]l of height 0. .

On the other hand, for a finitely generated Z,-module T endowed with a continuous
action of Gal(Q,/Qp), let

Hi}oc (1) = 1&11 HY(@Q (G T).

Then the following are known:
(12.2.3) HL(T) = 0 if ¢ # 1,2, H (T} and H} (T) are finitely generated
Zp[[Goo)]-madules, and

dim{H},, (T)q) = ranke,(T),  dim(F(T)e} =0

log
for any prime ideol q of ZpllGaol] of height 0.
The structure of FIZ (T is well understood: By local Tate duality [Sel, Chap. I,
§5.2],
2, (1) = Hom (H*(Qp((pe ), Homg, (T, Q/2)), Q/Z) (—1)-
Finally, for a finite dimensicnal Qg-vector space V endowed with a continnous action

of Gal(3/Q) which is unramified at almost all prime numbers {resp. endowed with a
continuous acticn of Gal(Q,/Qp)), let

HYV)=H4T}@Q (resp. Hy (V) = H (T} & Q)

loc¢ loc

where T is a Gal{/Q) (resp. Gal(Q,/Qy)) stable Zy-lattice of V. Then H(V)
(resp. H (V7)) is independent of the choice of T

loc
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12.3. Let kN and f = En;l a.q" be as in the beginning of Chap.III, and let
F =Q{an; n = 1) be as before, Let A be a place of F lying over p, Fi the local field
of F' at A, O, the valuation ring of F), m, the maximal ideal of O, and let

A = O5[[Gec]l-
Consider the two dimensicnal representation Vi, (f) of Gal(Q/Q) over F )x.a,ssociated

to f{8.3).
We will prove the following results Thm. 12.4, 12.5, 12.6.

Theorem 12.4. — Take any Gal(Q/Q)-stable Oy -lattice T of Vi, . Then:
{1) H3(T) is a torsion A-module.

{(2) HYT) is a torsion free A-module, and HMNT) @ Q@ = HYVr, (f) is o free
A ® Q-module of rank 1.

{3y If p # 2 and if T/myT is irreducible as a two dimensional representation of
Gal(@/Q) over Oy /ma, HXT) is o free A-module of rank 1.

Theorem 12.5

(1) There exists o unique F-lincar map
Vi (f) — BN Vi ()5 v 2

having the foliowing property : Letr €L, 1< r € k—1, letn =0, and let v € Vr(f).
Then the image of ZEYP) under the composite map

H (Vi (F)) 2 H (Ve (£) (B — 1) — HHQp{Gpr), Vin (F) (ke — 7))

P S(f) @ Fr 90 Q)

{the first isomorphism is the product with (Qpn]fgcl—r)) belongs to S(f) ®gQ(n), and
the map

S(F) 80 Qem) — Vel)%;

z@y— > x{o)a{y)per ()%,
TEG,
where x is any character G, — CF and £ = (=107~ x(~1), sends the image of
(p]
2y to

(2?1_2-,)]:—1"—1 . L{p} (f*s X T) : f}’i'
We have

zyy = —o-1(=P)

where v Vi, (f) — VFA._(f) is the action of the comples conjugation.
(2) Let Z(f) be the A ® Q-submodule of B (VE, (f)) generated by Zfrp) forally €
Ve (). Then B (Ve (£))/Z(F) is a torsion A ® Q-module.
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(3) Let p be a prime ideal of A of height one which does not contain p. Then

length, (H*(Va, (/))e) _
< lengthy, (FM(Ve, (F))s /Z(f)p) + lengthy, (o (Ve (F1s)-
IFTE (Vi (£))p # O, then f and p satisfy the following
(12.5.1) k=2, f s not potentially afgood reduction at o (12.7), p s the kernel of the

ring homomorphism A — Fy induced by x~ Byt Gop — F3S for some homomorphism,
x : Goe — F5* of finite order, and

lengthy, (HE (Vi (F)p) = 1.

(4) Let T be o Gal(Q/Q)-stabie Oy~ la,ttzce of Vr, (f), and let Z(f,T) be the A-
submadule of HY(T) ® Q generated by zﬁr for all v € T. Assume p # 2, and assume
that the following (12.5.2) is satisfied.

(12.5.8)  There exists an Oy-basis of T for which the image of the homomorphism
Cal{Q/QCp)) — GLoy(T) ~ GLa(0)
containg SLo(Zy,). Here the last isomorphism is given by this basis of T,

Then,
Z(AT) CHYT) mHD)®Q

Furthermore,
lengthy,, (H2(Vie, ())s) < lengthy, (H' (Ve () /Z(f))

for any prime ideal of A of height one unless f and p satisfy (12.5.1} in (3).
Theorem 12.6. — Let T = Vo, (f) (8.3). Let Z be the A-submodule of H' Vo, (F)
generated by the following elements (see (8.1.3), (8.11}).

(1) 0z (F, k. §,0(A), prime(pd))nz1 € BYT)

(1<j<k—1, a,ACZ, A21, ¢,d€Z, (;6pA)= {d,6pN) =1).
(2) wgz 2 f) K, 4o, prime(pN )z € HY(T)
(1<ji<k—1 acSl(Z), c,d€Z, (cd,8pN) =1, c=d=1mod N).

Then Z < Z(f,T) and Z(f,T)/Z is a finite group.

Remark 12.7. — In Thm. 12.5 (3), “f is potentially of good reduction at p” means
that one of the following equivalent conditions {1), (2} is (hence both of them are)
satisfied.

{1} There exists a finite extension K of Qyp having the following properties. For
any finite place v of F which does not lie over p, the representation of Gal(K/K) on
Ve, (f) is unramified. For any finite place v of F' which lies over p, the representation
of Gal(K/K) on Vi, {f) is crystalline.
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{2) There exist at least one finite place v of ¥ and a finite extension K of @,
having the following property : Either v does not lie over p and the representation
of Gal(K/K) on V&, {f) is unramified, or v lies over p and the representation of
Gal(K/K) on Vg, (f} is crystalline.

The equivalence between these conditions follows from the works [Ca, Sal]. These
conditions are satisfied if p does not divide N.

Remark 12.8. — We say that f has complex multipiication (f has CM) if there s an
imaginary quadratic field A of Q and a Hecke character ¢ of K {thai is, a continuous
homomorphism 3 : Cx — C* where C denotes the idele class group of K} such
that

L(f, 5) = L(?j)u 3)'
Here,

Ligp,s) = [[(1 = w{w)N()~*)~"

where v ranges over all finite places of K at which ¢ is unramified, ¥/(v) iz the image
of prime elements of K, under %, and N(v) is the norm of v.

By Ribet [Ril, Ri3] {generalization of Serre [Se3]), we have the following.
(12.8.1) If f has no COM, then, for almost all finite places A of F, there erist
a Gal(Q/Q)-stable Ox-lottice T of Vp, {f) which satisfies the condition (12.5.2)
at Thm 12.5 (4).

Note that if the condition (12.5.2) at Thm 12.5 (4} is satisfied for ore Gal{Q/Q)-

stable Oy-lattice T of Vg, (f), all Gal{@/Q}-stable Oy-lattices of Vp, (f) have the
form a7 for some a € £} (see the proof of 14.7), and hence the condition (12.5.2) at
Thm 12.5 (4) is satisfied for any Gal(Q/Q)-stable Ox-lattice of Vi, (f).
(12.8.2) If f has no CM, then, for any finite place A of F, there exist o Gal(Q/Q)-
stable Oy-lattice T of Vi, (f) and an Ox-basis of T such that the image of the action
Gal(Q/Q{¢pe)) — GLo(Ox) with respect to this basis contains an open subgroup of
SLs (Zp)

The proofs of Thm. 12.4, 12 5, 12.6 are given in § 13 in the case f has no CM and
in §15 in the case f has CM. The proof in the case f has CM heavily depends on the
work of Rubin [Rul] on the main conjecture for imaginary quadratic fields.

12.9. Letps#2.
We recall the classical Iwasawa theory. We have for n 2 0,

HY(Z [, 1/p], Zp(1)) = Z[Gpn, /7] @ Ly,
H(ZGpn, 1/p], Zp(1)) = CUQGr)) @ Zp
where CL{Q{(,»)) denotes the ideal class group of Q(Cpu). Let
Zip [Gooll + = Zip[[Goll/ (71 — 1),
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and let Z be the Zy[[Gool]4-submodule of H'(Z,(1))" generated by the image of

(1 = &)1 = G s € m(Z(Gym, 1/}
Then H*{Z,(1})* and HYZ,(1))T/Z are torsion Zp[[Gas]]+-modules. The classical
Iwasawa main conjecture proved by Mazur-Wiles [MW] states

lengthg (e ., (HZe (1) = lengthez e, (HH(Z(1))) /2,)

for any prime ideal p of A of height, one.

This Iwasaws main conjecture is generalized fo “main conjectures of motives” as in
[KK2, Chap.I, §3.2] and [Pe3, §4.4]. These main conjectures are specialized to the
following “main conjecture for modular forms®.

Conjecture 12.10 (main conjecture). — Let T be o Cal(Q/Q)-stable O,-lattice of
Vi {f) and let p be a prime ideal of A of height one. In the cose p = 2, assume p
does not contain 2. Then Z(f,T), C HY(T}, and

length, (H*(T},) = lengthy (H'(T)p/Z(f, T)p)-

13. The method of Euler systems

In this section, we give the proof of the theorems in §12 by using the method of
Euler systems in the case f has no CM. The proof of the CM case will be completed
in §15.

In this section, we fix a prime number p.

13.1. The method of Euler systems started by Kolyvagin bounds arithmetic groups
by using a system of “zeta elements”. (See [Kol; a similar idea was found by Thaine
independently [Th].] We use results on Euler systems in Perrin-Riou [Pe4], Rubin
[Rud], and [KKA4].

Let L be a finite extension of Q, and let T be a free Oz-module of finite rank
endowed with a continuous Op-linear action of Gal(Q/Q) which is unramified at
almost all prime numbers. Let £ be a finite set of prime numbers containing p and
all prime mumbers at which the action of Gal(Q/Q) on T ramifies, and let

E={m=z1; prime(m)NT = {p}}.
For a prime number £ which is nat contained in 3, let
F(t) =deto, (1 = Frg-t:T —T)e Ot

where Fr; is the arithmetic Frobenius at £,
By an Euler system for (T,L,I), we mean a system of elements z, <
HY{Z[(m, 1/p],T) defined for m € 2, satisfying the following condition.
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(13.1.1) For m,m’ € Z such that m | m’, the norm map
H (2l 1/p], T) — 0 (2, 1/0], T)

sends zp, io (Hz Pg(f?‘la;l)) < 2m, where £ ranges over all prime nuwmbers which
divide m’ but do not divide m, oy is the arithmetic Frobenius of ¢ in Gal(Q{$n)/Q),
and we regard Po(~ta7 ) as an element of the group ring Or[Gal(Q((y)/Q)] which
acts naturally on TZ[Cm, 1/p), T)-

Example 13.2 (classical example). — Let L = Q,, T = Z,(1), £ = {p}. Form € =
(that is, for any m 2 1 such that pim), let 2z € H'(Z[Gn, 1/7], Zo(1)) be the image
of (1 — Gui{1 = (3Y) € Z[Gm, 1/p)* under the isomorphism

Zliem, 1/81* © Zop = B (B, 1/2], Z,(1)
Then {zm)rm is an Buler system for (Z,(1}, Qp, ). In fact,
Pty=1-8t, D lo;)=1-0;1,

and (13.1.1) follows from the fact that for any m 2 2 and for any prime number £,
the norm map

QCme)™ — QGm)”
sends 1 — (me 10 1 = G if £ divides m, and t0 (1 — (n}(1 — 071 {(Gm)) ™ if £ does not
divide m.

Example 13.3 (the crucial example for this paper). — Lat A be a place of F lying
overp, let r € Z, and let T = Vo, (f)(k - r). Fix an Integer 7 snch that 1 €7 € k-1,
and fix non-zero integers ¢, d. Let £ be either a symbol of the form a(4) {a,4 € Z,
A 2 1) or an element of SLz(Z). In the case, £ = a(A), we assume (¢, 8p4) = 1 and
(d,6pN) = 1. In the case £ € SLo{7Z), we assume (cd, 6pN) = 1.
By fixing these, let ¥ = prime(cdpAN) in the case £ = a{d), and let
Y = prime(edpN) in the case £ € SLo(Z}). For m € E, define z,,, € HYZ[(,1/0], T)
by
Y C,dz&f) (fir,7,& prime(md)) if £ = a(4),
" C,dz‘f(?’z'l-)) (f: T:j: EJ prlme(mN)) lf 5 S SLZ(Z)
Then (Zm )rm 18 an Euler system for (T, Fy, Z).
In fact, for a prime number £ which does not divide Np, we have
deto, (I —Fry ' -4 Ve, (F)) = 1 — ast + e(0)£F 142,
and this polynomial has the form (1 — af)(1 — £f), &, 8 € C, |a| = |§] = 2172,
Eence
Pg(t) = detoL(l —Frp- 4Ty =1 *Egel_Tt + f(f)fk+l—zrt2,
Pt oy =1 =@l oy (O T g R

Hence {(zm)m s an Buler System for (T, Py, &) by Prop. 8.12.
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By [Pe4, Ru4, KK4|, we have

Theorem 13.4. — Let (T, L,X) be as in 19.1, and let (2m)m be on Euler system for
(T,L,%). Let A = Op[[Gool], let Z be the A-submodule of H*(T') generated by (zpn)n,
and let J be the ideal of A generated by h(Z) for all A- homomwphzsms h:-HYT) > A.
On the other hand, let

H2 (T)U dff Ker(H2 (T) - H%OC(T))

Assume the following

(i} Z4 # 0 for any prime ideal q of A of height 0.

(ii) ranko, (I'M) = ranko, (T7) = 1.

(iii) There exists an inieger w such that for any prime number { which is not
contained in ¥, all eigenvalues of Fry" on the L-vector space T o, T are algebroic
numbers whose all complex congugnates have absolute value w2,

(iv) T @0y, L is irreducible as a representation of Gal(Q/Q) over L.

(v) There exists an element o of Gal{Q/Q({pe)) such that

dimz(Ker{l — ;T ®0, L = T'®g, L)) =1.

Then we have:

(1) H3(T) is a torsion A-module.
(2) Let p be @ prime idenl of A of height one which does not contain p. Then

length, (HXT)y,) € length, (Ap/Ju).
(8) Assume that there exists gn element o of Cal{Q/Q((p=)) such that
Coker(1—g:T — T)

is o free OL-module of rank 1, and assume thet T ®o, Or/my is drreductble as o
representation of Gal(Q/Q) over Or/myz. Assume further p # 2. Then

length, (H3(T)gp) € length, (Ap/Jp).
for any prime ideal p of A of height one.

In the case of 13.3, the conditions (i), (iii), (iv) in Thm. 13.4 are satisfled ({iii)
is due to Deligne [Del], and (iv) is due to Ribet [Ril]). However if f has OM, this
theorem is not applied becauge the condition (v) i3 not satisfied in the CM case. So
the CM case will be discussed separately in §15. Concerning the condition (i) in
Thm. 13.4, we use the following 13.5 and 13.6.

Theorem 13.5
(1} {Jacquet-Shalika [JS]). L(f,s) has no zero on Re(s) = ki
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(2) (Rohriich [Ro2]). Assume k is even. Let S be a finite set of prime numbers.
Then the set

{xe Lil Hom((Z/m)™, C*); Ls(f. x k:/Q):D}
primne,:(;n)CS

is finite.
(When m/|m’, we regard Hom({Z/m)”,C*} C Hom((Z,/m')*,C*).)

Theorem 13.6 (Ash-Stevens [AS}). — Let L » 3. Then Vi z(Y (L)) is generated over Z
by the elements

a6 ik, §) (@€ Gle(Z/L),1<j<k—1).

Proposition 13.7. — Define Z < H(Vo, (f)) as tn Thm. 12.6. Then Z; # 0 for any
prime ideal q of A of height 0.

Proof. — Let + be + (resp. —) if the image of —g_1 In A4 is L (resp. —1). By 13.6, for
some ¢ € STo(Z) and some integer 7 such that 1 < J € k—1, we have §(f, ], ayt £0.
Take such oy, j and take integers ¢,d such that (cd, 8p) = 1,c = d = 1 mod N, and
& £ 1,d2 # 1. Then by Thm. 6.6, Thm. 9.7, and by Thm. 13.5, for almost all
homomorphisms ¥ : Gae — TF—;\( of finite order such that x{—1) = &, the element
(C,dzgi)(f,k,j,a,primeLpN)))n;l € Z < HY Vo, (f)) (12.6) is sent to a non-zero
element by the homomorphism

(13.7.1)  H'(Vo, () = H' (Vo, (H)(1) — HHQp(Gr), Vi ()

P L S @r Fy 2o S(F) ®F Fa
where n 32 0 is an integer such that y factors through G, — Gy, and the last arrow
in (137.1) is a — ¥, oo ofa) @ x(7). The composite map (13.7.1) factors through
HY Vg, () /pH (Ve (F)) where p is the kernel of the ring homomorphism A — Fy

which sends 0 € G to &(e) " 'x{z)~*. Hence for infinitely many prime ideals p of
A of height one such that p D g, the image of Z in H(Ve, (f})/0H (VF, (f}) is not
zero. This proves Z; # 0. ]

In the rest of § 13, we assume [ has no CM and we prove Thm, 12.4, 12.5, 12.6
under this assumption. The proofs of these theorems in the case f has CM are given
in §18.

13.8. We prove Thm. 12.4

To prove 12.4 (1), we may assume T° = Vp, (f). In this case, the fact H*(T)isa
tarsion A-module follows from (12.8.2), Thm. 13.4 (1), and 13.7.

We prove 12.4 (2). By (12.2.2) and by 12.4 (1), it is sufficient to prove that H*(T)
is a torsion free A-module. (This torsion free property is deduced also from a general
result [Pe3, Lemme p. 27].) '
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Let = be a non-zero-divisor of A. We prove that z : HY(T) — HY(T) is injective.
There exists a muitiple of # of the form p™y where n = ¢ and y is a non-zero-divisor
of A such that A/yA is p-torsion free. (In fact, the image of z under the norm map

A = O3 [[Goo]] — OA[[GL]] = OA[IX]]

has the form p*y for n 2 0 and y as above, and ¢ divides p™y in A.) Hence we may
assume & = p or A/zA I8 p-torsion free.
Let
7+ Spec(Z[1/p]) ~ prime(N) — Spec(Z{1/p])
be the inclugion map.
First consider the case = p. By the exact sequence

0 = 5T Eo 4T — (T /),
the injectivity of p : H*(T) — HY(T) is reduced to lim H°(Q((pn),T/p) = 0. Take
m 2 1 such that HY(Q({»), T/p) = H*(Q{(p=), T/p). Then, for n > m, the norm
map
HY(Q(Gr), T/p) = HY(QUe), T/p)
is the wultiplication by [Q((e+1) : Q(¢n)] = p, and hence is the zero map. Hence
lim_ FO{Q(Gn ), T/p) = 0.
Next we consider the case A/zA is p-torsion free. For n = 0,
H*(Z[Gpn, 1/p], T) ~ HYZ[1/p], T ®0, O:Gn])

where Gal{Q/Q) acts on the tensor product as follows : o € Gal{Q/Q) acts by o@o!

where o denotes the canonical image of o in G,. We have

HE(T) = lim HY(Z[1/pl, T ©0, Ox[Ga)).

Hence we have an exact sequence

HYQ, T @0, AfzA) — HYT) 2o HY(T).
where Gal{Q/Q) act on the tensor product as follows : o € Gal(§/Q) acts by @0}
where 0., denctes the canonical image of ¢ in Ga. We prove

H(Q,T @0, AfxA) = 0.

The set HYQ,T ®0, A/zA) i identified with the set of all O,\[Gal{@/Q)]-
homomorphism Homg, (A/zA, 0,) — T (Gal{Q/Q) acts on A/zA here via ¢ — o l).
Since the action of Gal({J/Q) on Homg, (A/zA, () is abelian and the representation
of Gal{Q/Q) on Vi, (f) is rreducible and is not abelian, there is no such non-trivial
hormomorphism.

We prove 12.4 >(3)‘ Let z,y be elements of A such that (z,y) {s a maximal ideal
of A. Tt is sufficient to prove that z and y form a regular sequence for H* (7'}, that is

z:HYT) — BHYT) and y: HYTY/2HHT) — AYT)/zH(T)
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are injective. The former is already proved. We prove the latter. By
H'Y(T)/H (T} C HYZ[1/p], T ®o, A/zA)
and by the exact sequence
0~ 3.(T @0, AfzA) < 4u(T B0, Afeh) — ju(T o, A/(z.y),

it is sufficient to prove HY{Z{1/p],T ®o, A/(z,y)) = 0. Here Gal(Q/Q) acts on
AJ(z,y) viao — o !, and hence A/ (z, ) = (O, /my ) (r) for some r € Z as Gal(Q/Q)-
module over Oy ((r) means the Tate twist). By the assumption of irreducibility, the
Gal(Q/Q)-fixed part of [T/myT)(r) is trivial. 0

13.9. In 13.9-13.11, we give preliminaries for the proofs of Thm. 12.5 and Thm. 12.6.
For a commutative ring R, let Q(R) be the total quotient ring of R. That is,

Q(R) = {ab™'; a,b € R,b is a non-zero-divisor}.

) for ¥ & VF, (f}, which appears in
Thm. 12.5, first as an element of H' Ve, (£)) @4 @(A). We will see in 13.12 that 2P
belongs to T (Ve (f)).
Fix elements oy, ap of SLq(Z) and integers j1,fa such that 1 € 1, £ k—1{(2=1,2)
and such that §(f, 71, CL‘1)+ #0, §(f, 92, 22)” # 0. (13.6).
Let v € Vi, (f). We have
7 =016(f, 1, 00)F +528(f o, o2) T

for some b1,ba € Fy. Fix ¢,d € Z such that {(ed,6p) =1, c=d=1mod N, & £ 1,
d? % 1. Define 2% € T (Vin, (£)) ®4 Q(A) by

2#) — {#(c, d, 1)t by (c,dzta)(f: LNGE al,prime(pN))) >1}

+
+ {u(c, d,ja) "t by - (C‘dzgi) (f.k, do, ozz,prime(pN)}) >1}
where .

ple,d, ) = (& =M g ) (P — &t o) - T - Bt Fo) € A
I

for j € Z in which £ ranges over all prime numbers 5 p which divide N. Tt is easy to
see that pfc, d, j) is a non-zero-divisor of A for any j € Z.

By Thm. 6.6 and Thm. 9.7, if v € Vp(f} < Vr, (f) and x is a homomorphism
(G — Q" of finite order such that ¢ — *~9%(c) # 0, @ —dx(d) # 0 for j = jr, j and
L — @ ~*x(£) 0 for any prime number £ 5 p which divides NV, the homomorphism

B (Ve () ®a Al — S(H@rFx (¢ = pled)pled, j2))
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induced by (13.7.1) sends ng ) to an element of §(f)} @ Q@ whose image under pery
S(f) ®r Q — Vr(f) ®p C coincides with Ls(f*,x, k — 1} - v where § = prime(pN)
and + = x{-1).
Since H (Vi (£)) is a free A[1/pi-module of rank 1 (Thm.12.4 (2)), this shows that
(p ) s independent of the choices of o, j1, @3, §2, ¢, d as above. This also shows

2f)y = —o-a(2f).

since the action of o_; on H(Vp, } commutes with the action of —x(~1) on S(f)@#Fx
via the map (13.7.1).
We express the elements

(c,dz;a) (f: k:j:a(A)1 prime(pA)))n>1 and (c,dz(p) (f1k:?j? &, prime(pN)))ﬂ>l

(o & SLa(Z)) by using 2.

Lemma 13.10. — We have the follouring equelities in H'(Vr, (F)) &4 Q(A).

(Y Let1<j<k—1,aA€Z A2, andc,d be integers such that (c,6pA) =
{d,6pN) = 1. Then

(p) ; : . — o=k _—1 | = pyp—k—1 =2
(c,dzpn (f k.7, a(A),pmme(pA)))ﬂ;l = {1;1(1 — @l o, BT )}
(Pd*a?) — FHI 20 2P — Adi T e (d)o s + It e (d)o4al))

where £ ranges over all prime numbers # p which divide A, and

T = J(fajva'(A))= T2 = 6(f,j,ac(A)),
v =0(f. 7, “a/d" (A}), va = 6(f, 4, “ac/d” (A)),

Here “a/d” means any infeger b such that bd = a mod A, and “ac/d” means eny
integer b such that bd = ac mod A.

(2) Let 1 € § € k— 1, a € SLa(Z), and let ¢, d be integers such that (cd, 6p) = 1
andc=d=1mod N. Then

{13.10.1) (Cdzpn (/. k., a, prlme(pN))) =
(& = ey - o) [ 101 - @t o) | ol
where £ ranges over all prime numbers # p which divide N.

Proof — By Thrm. 12.4 (2), this is obtained by computing the images of the elements
in problem under the map (13.7.1) by using Thm. 6.6 and Thm. 9.7. O

Lemma 13.11. — Let A2 1 and let v be o homomorphism (Z/A)< — T .
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(1} For integers c,d such that (c,6d4p} = (d,6ANp) =1, we have

Z via) - (cdzéﬁ)(f,k,k—l,a(A),prime@A))) =

ac(EfA)*% =t
{H(paze oyt B ) }
£
(c® = (e te.) (d® — dbs Z C")Za(f E-1,a(A))
c(Z/A

in HY Vg, (f)) @4 Q(A) ®o, F», where £ ranges over all prime numbers # p which
diide A.

(2) The element 3, ciz ayx ¥(@)0(f k — 1,a(A)) of Ve(f) ® Q is not zero if
Lcime(ay (F*, ™4 & — 1) # 0 and 4f the conductor of v is A.

Proof — (1) follows from Lemma 13.10 (1). We prove (2). The canonical pairing
(7.13.1)
() RV (V) X Vie (T3 (N) — @
induces
{,per(f*)}: Vr(f) — C.
Wehavefor Az land a € Z,

(8(f, 1k —1,a(A)), f7) = (—2m)*1. AF2 .f‘” Py +afA)y* P dy
0
From this, we obtain

Y. @)Uk~ 1a(A), f7)
aC(Z/A)*
= (=1 AR (k= 2) - G, Ca) - Dprimeqay (f5 07 h b — 1)
where G(v,(a) is the Gauss sum. This proves 13.11 (2). |

13.12. In this 13.12, we prove Thm. 12.5 {1) and Thm. 12.6.

Let T = Vo, (f). Define Z{f, T} to be the A-submodule of H}(T) ®4 Q(A) gener-
ated by 2’ for all v & T. On the other hand, let Z < H'(T) be the A-submodule in
Thm. 12.6.

By Lemma, 13.10, we have Z < Z(f,T). We prove that Z(f,T)/Z is a finite group.
This will show that

Z(#,T) CHYT) ©Q = B (V5 (f))-
By 13.6 and by 13.10 (2), there is a non-zero-divisor u of A such that - Z(f,TYycZ
and such that A/uA is p-torsion free. Hence it is sufficient to show Z(f,T), = Zp
for any prime ideal p of height one which does not contain p. Let p be such a prime

ideal, and let A be the map A — A/p, and embed A/p into F over Oy. Fix an
embedding { — F over F. Take integers c,d such that {(¢,6p) = (d,8Np) =1 and
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£ 1, d% # 1. By Thm. 13.5, there exist a power A of p and a homomorphism
vi(ZJAY - Q" < F, of conductor 4 satisfying the following (13.12.1}-(13.12.4),

(13.12.1) Ligp (v k=1 #0
(13.12.2) & — Evlc)y  hic,} £0
(13.12.3) @ - d*={d)v(d)h(oy) # 0

(13.12.4)  Let & be + (resp. —) if the image of —o_1 in A/p is 1 (resp. —1). Then
v(-1) =

Let L be the subfield of F) generated over A/p by the values of v, and let w
be the kernel of the homomorphism Or[[G]] — L induced hy the canonical map
A — A/p C L by Op-linearity.

Let v € Ve(f). Let - be as 111 (13.12.4). Then the image of 2 in HL(Vr, (f)) ®
€(A;) coincides with that of z 7 By 13.11 {2), (13.12.1), (13.12.4),

=b >, va)d(fk-1a(4) inVe(f)orQ
a€(T/ A%
for some b € . We have
2P =t D vy sy 0 VR () @4 QA @5, L
ag(Z/A)x

By 13.11 (1), {13.12.2), (13.12.3),

3 y(a)-(C,dzgﬁ?(f,k,k—1,a(A),prime@A))) L= @)y
ae(z/A)" T as(zrayx
for some p € (O1[[Gullpr)™, and hence Zae(zm)x V(G)Zg?}kml,a(}l)) belongs to
Z®a Opl[Gocllpr i HY Ve, (f)) @4 Q(OL[[Geollp). Hence z,(Yp) also belongs to
Z 94 O1[[Goolly 0 H'(Vi, (/) ©4 Q{02 [[Guclly ). This proves 27’ € 2.

It remains to prove that z&") {7 € Vi, (f)) has the property stated in Thm. 12.5 (1).

letreZ, 1<r<k-1lety: Go — O be s homomorphism of finite order, and
consider the composite map

(13.12.3) TNV, () ~ H' VR, (N5 — 7)) — HHQp(Ger), Viry (F)(k — 7))

P, S() ®rF Fy ®g Qi) =5 S(F) 95 Fa

where the last arrow is

WwRaeRbr— Z o(hw & ax(o).
ceG,
Let A1 A — F be the ring homomorphism induced by £ *x ™! : Goo =+ Fy , and let
p be the kernel of A. TheE the map (13.12.5) is a A-homomorphism with respect to the
action of A on S{f) ®r F') via h. Take integers c, d such that {c,6p) = (d,6Np) = 1
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and ¢? £ 1, d% # 1. By Thm. 13.5, there exist a power A of p and a homomorphism
v (Z/A)Y - Q@ C Ty satisfying (13.12.1)-(13.12.4). Let v € Vi(f). Let + be
as in (13.12.4). Then the image of z in H*(Vi, {f}), coincides with that of ng)
By 13.11 (2), (13.12.1), {13.12.4), v£ = 5. Paezyayx ¥a)d(f, k —1,a(A)) for some

T be 0. We have
(p) .
ngp) =b- Z y(a)zﬂ?f,k—l,a(A))’
ae{Z/A)%
Z via) - (cdzpn (f kk—1,a{A), prime(pAd) ) oy T Z O.)ZE(fk LalA)
ac{Z/A)% el a&{/A)X

where p = (¢? — 2v(e)™ ac)(al2 — dfe(d)v(d)ry). Hence the image of z(m under
(13.12.5) coincides with the image of

Z va) - (c,dzgﬂ)(f, bk -1, a(A),prime(pA)))

>1
aE(Z/ A% "

b {e? = Fe{e) () T THA — dRe(d)u(dx(d) T T
By Thm. 6.5 and Thm. 9.7, this image is an element of 5{f) @ Q whose image under
per; coincides with (2w} " 1L (f*, %, 7) - v*. O

13.13. We prove Thm. 12.5 (2) (3).

Thm. 12.5 (2} follows from Thm. 12.4 {2} and the fact that Z(f}, # 0 for prime
ideals q of height 0 {13.7).

The inequality in Thm. 12.5 (3) is a consequence of the inequality in Thm. 13.4 {2}.

Tt remains to prove the statement about the vanishing of H7 (Ve (f))p in
Thm. 12.5 (3). Assume H2 (Vp, () # 0. Let T be a Gal([Q,/Q,) stable Ox-lattice
of Vi, (f). By Tate’s local duality, the Pontrjagin dual of H? (T is isomorphic to

HYQ, (s ), Homa, (T, B3 /O)(1))

Denote this Oy-module by C. If HE (Ve (f))p # &, H2, (T) is not finite, and hence
C containg an Jy-submodule which is isomorphic to Fy/O,. Since
HOmOA (F/\/O)H C) - HO(@P(Q.PW )1 Hom'FA (VFA (_f),F,\)(l)),

this means that the last space is not zero. Hence Vi, (f) has a non-zero quotient repre-
sentation of Gal(Q,/Q,) over Fy on which the action of Gal(Q,/Q,) factors through
the canonical projection Gal{Q@p/Qp) > Geo. Since Vi, (f) is of Hodge-Tate as a
representation of Gal(Q,/Q,) [Fal), it follows from [Se2, Chap. I, Appendix] that
this quotient representation has a non-zera quotient representation &/ of Gal(Q, /0,
over Ky such that for sorne n > 0, the action of Gal(Q,/Qy({pe)) on [ is given by &”
for some r € Z. {x denotes the cyclotomic character as before.} Let €, be the p-adic
completion of Fy. Then

(13.13.1) Vi () @m, Cp = Cp & Cp(l —k)  [Fall.
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I U = Vp,, we have U ®p, ©, = Cp{r)®? which is a contradiction. Hence
dimp (U) =1 and U®p, Cp, = Cpir).

By (13.13.1), we bave r € {0,1 — k}. On the other hand, the Frobenius operator
08 Derys(Qp ($on ), U) (Derys (Qp(Gpn 1, ) means the Dy, for the local field Qp,({,)) is
the multiplication by =2, but by [Sa2], the eigenvalues of the Frobenius operator
00 Doy (@ (G ), TF) roust have complex absolute value p®=1/2 (resp. ph/?) if § is
(resp. is not) potentially of good reduction at p. Hence —2r € {k — 1,k}. Since
re{0,1—k}and k = 2, this means k£ = 2 and r = —1 and that f is not potentially
of good reduction at p. Furthermore, the Ox-module € has Oy-corank 1. (If it has
corank 2, the action of Gal{Q,/Qy,) on Vi, {f) factors through G, and then by Serre
[Se2, Chap.[I, Appendix|, Vm (f) should be potentially of good reduction at p.)
By duality, HZ (Vs (f)) is a one-dimensional Fx-vector space, and is isomorphic to
U(—1) as a A-module. W

13.14. We prove Thm. 12.5 (4). Since T = a- Vp, () for some a € F}* under the
agsumption of Thm. 12.5 {4) (see 12.8}, we may assume T = Vp, (f). In this case,
since Z{f,T)/Z is a finite group, Z(#,T), © HY(T), for any prime ideal p of A of
height one. Since H'(T) is a free A-module under the assumption of 12.5 (4} hy
12.4 (2), this means Z{f,T) ¢ HY(T). The inequality in Thm. 12.5 (4) follows from
Thm. 13.4 (3). 0

14. Finiteness of Selmer groups and Tamagawa number conjectures

In this section, we prove results on finiteness of Selmer groups associated to mnodular
forms (Thm. 14.2). The proof is given complstely in this section in the case f has no
CM and the preof for the CM case will be completed in §15. Thm. 14.2 in the CM
case has been proved in many cases (Rubin [Ru2], Guo [Guj, Han [Ha], Dee [DJ],...).
We also consider in this section the Tamagawsa number conjecture for modular forms
(Thm. 14.5).

14.1. We define the Selmer groups of p-adic Galois representations of number fields
by the method of [BK2], as follows.

Let K be a finite extension of @, let p be a prime number, and let T be a free
Zp-module of finite rank endowed with a continuous actions of Gal(K/K). We define
the Selmer group Sel(K,T) C HYK, T @ Q/Z) by

Sel(K,T) = Ker(HY(K,T ® Q/Z) — @ H (K., T ® G/Z)/ Image(H}(K.,, T ® Q)))

where v ranges over all places of K, and H} is as in [BK2, §3]. {The notation f in H}
has nothing to do with our cusp form f.) We review the definition of H}e For a finite

ASTERISQUE 295

p-ADIC ZETA FUNCTIONS OF MODULAR FORMS 235

dimensional Q,-vector space ¥V endowed with a continnous action of Gal(XK,/K,),
the subspace H}(K,, V) of H*(K,, V) is defined by

YK, V=0 if v is archimedian,
Ker(HY (K, V) — HY (K2, V) if v is a finite place not lying over p,
Ker(H'(I,, V) — H' (K, Berys ®g, V)

if v is a finite place lying over p.

HL(K,,V) =

Here K denotes the maximal unramified extension of F,.

If A is an abelian variety over K, the usual Selmer group Sel(K, 4) of 4 coincides
with (B, Sel(K, T;;(A)) where p ranges over all prime numbers.

In the case K = Q, we dencte Sel(Q, T") simply by Sel{T).

In this section, we prove

Theorem 14.2. — Let K be a finite nbelian exiension of Q.

(1) Let v be an integer such that 1 < v < k — 1 and » # k/2. Then for any finite
place A of F and any Gal(Q/Q)-stable Ox-lattice T of Ve, (f)(r), Sel(K,T) is finite.
For almost oll finite places X of F', Sel{ K, T) =0 for any Gal(Q/Q)-stable O, -lattice
T of Vp, (F)(r).

(2) Assume k is even. Let x © Gal{K/Q) — ©* be o choracter, and assume
Lifx, k/2) # 0. Then for any finite place X of F and any Gal(Q/Q)-stable Oy -
lattice T of Vi, (£)(k/2), the “c-part” Sel{K, T)X) of Sel(K,T) is finite. For almost
all finite places A of F, Sel(K, TV = 0 for any Gal(Q/Q)-stable Oy -laitice T of
Vi, (F){8/2).

The above “y-part” is defined as follows. Let G = Gal(K/Q), and let I,, C Z[G]
be the kernel of the ring homemorphism Z[G] — Q induced by x. Then, for a G-
module 3, the y-part M) of M is defined by

MY ={zeM;I,  ==0}

In 14.2 (2), L{f, x,s) means Lg(f,x,5) in which we identify y with the composite
homomorphism

(Zfm)* = GallQ(m) /Q) — Cal(K/Q) 2 T
for the smallest integer m > 1 such that K C Q((»), and S = prime(m) =
{primes which ramify in K/Q}.

Corollary 14.3. — Let A be an obelion variety over Q such that there is o surfective
homomorphism Ji(N) — A for some N = 1, where Ji(N) denotes the Jacobian
variety of X1(N). Let K be a finite abelian extension of Q, let x : Gal(K/Q) — C*
be o choracter, and ossume L(A, x, 1} # 0. Then:

(13} The x-port Sel(K, A ©g K)X) of Sel(K, A @g K) is finite.

(2) The x-part of AKX is finite.
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In the case J; (V) is replaced by Jy(V) and K = (@, this result is contained in the
work of Kolyvagin-Logachov [KKoL|. In the case A is an elliptic curve with complex
multiplication, this result is contained in the work of Rubin [Rul] which generalized
the work of Coates-Wiles [CW].

We can replace the “y-parts” Sel( &K, T, Sel( K, 4 ®g K% and AKX in 14.2
and 14.3 by the “x-quotients” Sel(K, 1)y, Sel(K, A @g K)(y) and A(K)(y), respec-
tively, where M,y = M/L M for a G-module M. This is because the kernel and the
cokernel of the canonical map M) — M,y are killed by some non-zero integer, and
because for M = Sel(K, T'), Sel(K, A @g K) or A(K), the kernel and the cokernel of

: M — M are finite for any non-zero integer 7.

I learned from Professor John Coates that the following resul’s is dedunced from
Cor. 14.3 by using the theorem of Rohrlich introduced in 13.5 (2).

Theorem 14.4. — Lei A be on abelian variely over @ such that there is e surjective
homomorphism Ji(N) — A for some N 2 1. Then for any m = 1, U, A(Q(Gnn)) is

finitely generated as an abelian group.

The argument to deduce 14.4 from 14.2 is given in Rohrlich [Rol, §3] where he
considered the case A is an elliptic curve with complex multiplication by using the
result of Rubin [Rul].

The “anti-cyclotomic” analogues of Thm. 14.3, Thm. 14.4 were obtained by
Bertolini and Darmon [BD].

The following theorem is related to the Tamagawa number conjecture in [BK2].

Theorem 14.5. — Letr € Z, 1 < v <k — 1. Let p be a prime number, A a place of ¥
lying over p, and let T be a Gal(Q3/Q)-stable O -lattice of Vi, (f)(r). In (1) (resp. (2)
and (3)) below, we assume L(f k/2) # 0 in the case r = k/2 (resp. Liny{fik—7) #0
in the case ¥ > k/2).

(1) H*(Z[1/p}, T} is finite and ranko, (H'(Z[1/p], 7)) = 1.

(2) Let vy be an element of Ve, (f), and let 2 be the image of ZSYP) under

H (Ve () = T (Vi (£)(r)) — HY(Z[1/p], Vi (F)(r)-

Let + = (=1L, Then, if v= £ 0, z is an Fx-basis of H'(Z[1/p], Ve, (F}(7)).

(3) Assume p #£ 2. Assume either k 2 3 or f is potentially of good reduction at p,
and assume further that the condition (12.5.1) in Thm. 12.5 (4) 1s satisfied. Let vy, z,
and £ be as in (2); and assume thai ¥* 45 an Ox-basis of T{—r)E. Then we have

#H(Z[L/p), T)} < [HHZ(L/p], T) - 21

Here, [HYZ[1/p],T) : 7] is defined as follows. Let L be a finite extension of (),
(we take Fy as L i the above), let M be a finitely generated Or-module such that
dimz{M ® Q) = 1, and let =z be a non-zerc element of M @ Q. Take y € M and a
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non-zerc integer ¢ such that z = ¢~y in M ® ). We define
[M @ 2] = [M:Opy] - [Or : cOp]*

{then this is independent of the choices of y and ¢).
The Tamagawa number conjecture in [BK2] generalized by [FP], [KK 2] predicts

#EXZ[L/p}, T) = [H(Z(1/p], T) : 2]
in 14.5 (3).
The rest of §14-is devoted o the proofs of Thm 14.2 and Thm 14.5.

14.6. In this 14.6, we show that for the proof of Thm. 14.2, we may assume K = Q.
Let the notation be as in Thm. 14.2. Let G = Gal{K/(}}. Then the following is
proved without difficulty:

Sel(K,T) = Sel(T @z Z[G]) (;f Sel(Q, T ®z Z{G]})

where the action of Cal(Q/Q) on Z[G] is as follows:

(14.6.1) For o € Gal(Q/Q), o acts on Z[G] as the multiplication by the image of
o~ under the canonical map Gal(Q/Q} — G.

The normalization of Op[G] has the form J],., Oy, where (L;);e; is a finite family
of finite extensions of Q. Let ¢ be a non-zero integer whick kills (T],c; Or,}/Or[G].
Then the kernel and the cokernel of

Sel(T @2 Z[C]) — Sel (T B0, [ie; Or. ) = @ B SellT B0, O.)
el v
are killed by ¢, where for each ¢, v ranges over all places of L; lying over A and O,
denotes the valuation ring of v, and where Gal(Q/Q) acts on O, and on O, via
{14.6.1), Hence Sel(K,T) is finite if each Sel(T ®0, O,) is finite, and Sel{K,T) =0
if each Sel{T ®p, O,) 18 zero and A does not divide ¢. Let m 2 1 and S be as in the
remark after Thm.14.2, and for ¢ € I, let

v (Bfm)* — C*
be the composite map:
(Z/m)* — G — Z[G]* — (0p)" <@ < C¥,

and let fi = 3, 5;anig" be the normalized newform such that Ls(fis) =
Ls(f, v, 9). (Hence an; = anis(n) if n is prime to m.) Let F; = Qfanm 2 1) C La,
Let v be a place of L; lying over A, and let w be the place of F; lying over v. Then by
comparing the action of Frobenius substitutions of prime numbers which are prime
to N'm, we see that Vi, (f) @r, L, with the action (14.6.1) of Gal(Q/@Q) on Ly,
is isomorphic to Vi, ,(fi) ©r., L. with the trivial action of Gal(@/Q) on Lis,

as a representation of Gal(Q/Q) over I;,. Take any Gal{Q/Q)-stable Oy-lattice
T’ of Ve, (fi). Then both T &0, Oy (here Gal{@/Q) acts on O, via (14.6.1))
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and 7" ®p,, Oy (here Gal(Q@/Q) acts on O, trivially} are regarded as Gal(Q/Q)-
stable O,-lattice of Vi () @, Liy. Since Sel(T” ®o,, Oy) = Sel(T) ®0,, On (here
(Gal(Q/Q) acts on O, trivially), the finiteness (resp. the vanishing) of Sel{T @0, Ou)
(here Gal(Q/Q) acts on Oy via (14.6.1)) is reduced {resp. reduced for almost all A
by Lemma 14.7 below) to the finiteness (resp. the vanishing) of Sel{1”). Concerning
the y-part, Sel{ K, T) = Sei(T @z Z[G])**. The image of x : Q[G] — C is some of
the number fields L; which appeared when we took the normalization of Z[G] in the
above argument. The kernel and the cokernel of

Sel{T" @g16) Oz,)™ — Sel(T @zp6) Or.)

are killed by the non-zero integer ¢ which appeared in the above argument. Hence
the fniteness of Sel(K,T)%) (resp. the vanishing of Sel(X TY0) for almost all A) is
reduced by the above argument to the finiteness (resp. vanishing} of Sel{T") where T”
is as above.

Lemma 14.7. — Almost all finite places A of F satisfy the following condifion: For
any finite extension P of Fy and for any fwo Gal{Q/Q)-steble Op-lattices T,T" of
Vi, (f) ®r, P, there ezists a € P* such that 7" = oT.

Proof. — Here we give the proof in the case f has no CM. The proof for the CM case
will be given in 15.19.

Assume f has no CM. Then as in (12.8.1), for almost A, there exisis an F\-basis
(e1,e4) of Vi (f) such that Oxe; + Oxeq is stable under Gal(Q/Q) and the image of
the homomorphism Gal(Q/Q) — GL2{0,) associated to this basis contains SLa(Zy)-
We show that such X satisfes the condition stated in 14.7, Let 7' be a Gal(T/Q)-
stable Op lattice of Vi (f) ®F, P. Let aies + azea € T'(a; € Op). Then by applying
(31),(19) € SLa(Zp) to arey + azen, we obtain azes, arez € T. By applying (¢ 3})
to aser, CL]_EQ, we obtain aie;, ages € T. This shows that T = a{Oper + Opes) where
a is a generator of the fractional Op-ideal generated by all a3,az € P such that
a1ey +azes € T : [

14.8. In general, for a finite extension K of @ and for a free Z,-module T of finite
rank endowed with a continuous action of Gal(K /K, let

S(K,T) = Ker(H'(Ox[1/p), T® Q/Z) —
B H (K., T @ Q/7)/ Image(H} (K., T ® Q))).

vlp
where v ranges over all places of K lying over p. Then Sel(K, T) < S{K,T) and
S(K,T)/Sel{K,T) is a finite group which is embedded into the direct sum of

HMF,, (K™, ToQ/Z))/Image(H (K., TOQ))) = H*(F,, HO (K, T@Q/Z))/(div)

where v ranges over all finite places of K not lying over p and div denotes the divisible
part. (The last group is zero if 7' is unramified at v.).
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In the case K = @}, we denote S(Q, T) by S(T).

For the proof of Thim 14.2, it is sufficient to prove the following : Assume 1 <7 <
k- 1 If kis even and r = k/2, assume L{f,r) # 0. Then &(T) is finite for any
Gal(@/@)-stable Cy-lattice T of Vi, (F)(r), and for almest all A, ${7") = 0 for any
Gal{Q/Q)-stable O-lattice T of Va, (£(r).

14.9. We give preliminaries on the duality theory of étale cohomelogy for global and
local fields ([FL{, [FP], (KK1]).

Let K be a finite extension of @, let L be a finite extension of Qp, and let T
be & ilnitely generated Op-module endowed with a continuocus Op-linear action of
Gal(K /K which is unramified at almost all finite places of K.

By the duality theory of Poitou-Tate [Tal, Ma2], we have sequences of Oy -modules
(149.1) 0 — H(Ox[1/p],T) — HY (K ©Q,,T)

— {HOx [1/p], T*(1) ® Q/Z)} ~— H'(Ox[1/p],T) — HYK ® Qp, T)
~— {H(Ox [1/p], T*(1) @ Q/Z)}* — H*(Ox[1/p],T) — HAK & Q,, T)
— {H*(Ox[1/p], T*(1)  Q/Z)}* — 0

(14.9.2) 0-— HYOx[1/p], T ® Q/Z) — H*(K @ Qp, T © Q/7)
~= (HY(Ox [1/p], T* (1))} — H(Ox[1/p], T ® Q/Z)
— HY{K @ Qp, T © Q/Z) — — {HNOx {1/, T* (1))}
— B (Ok{l/p], T® Q/Z) — BXK @ Q;, T @ Q/2)
— {H%( (O [1/p], TN} — 0
(T = Homg, (T, 0z) endowed with the dual action of Gal(K/K), and { ¥ =

Homo, ( ,L/01)), which are exact in the case p # 2, and exact upto x2 in the
case p = 2. Iere we say that a sequence of abelian groups

Jir1
—_

s O s Gy

is exact upto x2 if 2 Image(f;) C Ker(fiy1) and 2 - Ker{f;11) < Image(f;) for all 5.
We have the local Tate duality

{H(KeQp T (1) e Q/Z)}} = (K& Q,T) (¢ L)

v E a place of K lying over p and V = T ® Q is de Rham as a representation of
Gal(K,/K,), we have the duality {[BK2], §3)

{HY K, T* (L) ® Q/Z)/ Image(H}{K,, V*(1))}" ~ H} KL, T)

where H} (K, T') C H'(K,, V) denotes the inverse image of B4 (K, V) € HY(K,, V).
Hence, if V' is de Rham as a representation of Gal(K,/K,) for any place » of K lying
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over p, we obtain from (14.9.1) a sequence of Or-modules
(14.9.3) 0 — HY{Ox[1/p, T)/H}HOx{1/p], T)
5 HYK @, T)/MH{K @ Qp, T) — {S(K, T (1)}
— H Ok [1/p), T) — YK © Qp. T)
— B0k (L/p], T(1) 2 Q/Z)}" — 0
{here we define H}(K@ Qp, ) to be the direct sum of H} (K, ) for places v of K lying
over p, and Hulf (Ox[1/p], 1) to be the inverse image of H} (K9Q,, V) C H{K&Q,, V)
in HY(Ox [1/p]. 7)), and from (14.9.2} a sequence of Or-modules
(14.94) 0 S(K,T) — HYOx[1/p, T @ Q/Z)

L HYK ® Q. T ® Q/7)/ Tmage(HHK © Qp, V)

— (H}(K ® Qp, T*{(1)}} — H*(Ok[1/p], T & Q/E)
— H*(K ® Qp, T © Q/Z) — {H°(Ox[L/p], TN} — C
which are exact in the case p # 2, and exaci upto X2 in the case p = 2.

We will use also the following results of Euler-Poincaré characteristics which are
deduced from Tate [Ta2, Thm. 2.2]. Assume K = @ {we will need only tkis case).

(14.9.5) > (=1)ranko, (HY(Z[1/p], T)) = ~ranko, (T7).
geZ
(14.9.6) > (-~ 1)ranke, (H9(Qy, 7)) = -Tanko, (T).
g€z

14.10. We review scme basic properties of the Galois representation Vg, (f). The
following are known (see [Ca, Sal, Sa2]):

(14.10.1) Vg, (F*) is isomorphic to Homgp, (Vi (£), F3)(1 — k) as a representation
of Gal(Q/Q) over F\. Hence for v+ € Z and for o Gal(Q/Q)-stable lattice T of
Vi, (F)(r), T*(1) is isomorphic to a Gal(Q/Q)-stable Oy-lattice of Vi, (7*3(k —1) as
a representation of Gal(Q/Q) over Oy,

(14.10.2)  The aetion of Gal(Q/Q) on detp, (V, (F)) is given by s %™ where 5 1s
the eyclotomic character and e is regarded as the character of Gal{Q/Q) by

Gal(Q/Q) — Gal{Q((w)/Q) = (Z/N)* 2= F~.
(14.10.3) For eny prime number £ which is not divided by ),
detp, (1 - Fry s HY(QF, Vi, () = 1 — agu + ()¢ 0.

Here Frp is the arithmetic Frobemius of . (HY(QY, ) means the fired part by the
inertia subgroup of Gal(Q,/Qy).)
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(14.10.4) For the prime number p lying under A,

detFx (1 —pu; Dcrys(@m Vi, (f))) =1-—agzu+ E(p)pk_lug.
where ¢ is the Frobenius operator.

(14.10.5) Let £ be a prime number and let o be an element of Q such that I — au
divides 1 — apu + £(O)£F 12, Then ja| = 512 orta| = (522 [F £ does not
divide N, then |af = £5=1/2 In particular, Thm. 13.5 (1) implies that Lg(f, s) has
no zero on {s € C; Re(s) 2 &L} for any finite set of primes S.

Proposition 14.11. — Let r € 7.

{1) For any finite place N of F and for any Gal{Q/Q)-stable Oy-lattice T' of
Ve, (F)(r), BYQ, T @ Q/E) is finite.

(2) For almost all finite places X of F, we have HO(Q, T © Q/Z) = 0 for any
CGal{Q/Q)-stable Oy -lattice T of Vi, (F)(r). '

Proof. — (1) follows from H°(Q, Ve, (f)(r)} = 0. We prove (2). Let £ be a prime
nurmber which does not divide N and which A dees not divide. Then by (14.10.3),
the action of 1 — asFry + E(E’)Ek“lFrf is zero on Ve, (f), and hence 1 — agd~"Fry +
e(YF 1V E? = 0 on T @ Q/Z. Since Frp acts trivially on HY(Q,T @ Q/Z), we
have that 1 — agf™" + e(£)}f5~172" = 0 on HY(Q, T @ /7). If we can prove there
axists a prime number £ which does not divide & and which satisfies 1 — a7 +
e(f)#F=172 22 (), then we have that H°(Q, T @ Q/Z) = 0 in the case A does not divide
(1~ g™ (D177 Agsume 1 —aeé "+ (23712 = 0 for all prime numbers £
which do not divide V. Then

1@l + (P71 = (1—070) (1 — ()" 177 7)
for all prime numbers £ which do not divide N, and hence we have
Lg(f,s)=(s(s—r)Lgle,s—k+1+7r)
where § = prime(N}, which is absurd. O
Proposition 14.12. — Assume 1l < r < k—1. Let p be the prime number lying under A
Then.:

(1) dimg, (HYQy, Vi (D)) =2.
(2) dimpm, (HHQp, Vi, (£)(r))) = 1.
(3) HY(Qy, Vi ()(r) =0 for g # 1.

Proof. — By the result on lim H*(Qp((p-), T5(f)) I Thm. 125 (3), we have
BY(Qp, Vir, (f)(r)) = 0 for g # 1. '

SOCIATE MATHEMATIQUE DE PRANCE 2004




242 K. KATO

By (14.9.6), we have dimp, (H'(Qp, Vi, (£)(r))) = 2. From the exact sequence

0 — H(Q@p, Vi (£){r)) — Derys(Vir, (£))
— Darys(Ve, () € Dar (Vi (£))/Diaw (VE, (F))
— W3 (Qp, Ve (F)(r)) — 0
[BK2, §3], we have

dim g, (H(Qy, Vir, (£)(r))) = dimr, (Der (Ve ())/Dir (Ve (1)) = 1. O

14.13. Letr € Z, 1 € r £ k-1 In the case r = k/2, assume L{f, k/2) # 0. In
this 14.13, we prove (1){2)} of Thm. 14.5 and the finiteness of S{T") for any Gal(Q/Q)-
stable Oy-lattice T of Vg, (f){7), by using Thm. 12.5 (3} {the proof of Thm. 12.5 (3)
in the CM case will be given in §15).

Let + = {—1)""1, let ¥ be an element of Ve(f) such that v£ # 0, and let z be the

image of z¥) under the composition

(14.13.1) HY Vi, () - BN Ve (7)) — HHZ[L/p], Ve, (£)(r))-

Then the image of z under
exp®

HYZ(L/p], Va, (F)(r)) — B Qp, Vi (1)) /B Qo Vi () () —— S(F) 97 P
is an element of §(f) whose image under per, : S(f) — ¥l FIE coincides with
L {f k=r)-vF. (exp® kills Hﬁ;(@p, )i [BK2, §3]). This shows that if Loy (f, k—r) #
0, the image of 2 in H(Qy, Ve, (F)(r)/B4(Qy, Ve, (£)(r)) is not zero.

We prove the finiteness of H2(Z[1/p], ") in the case r € &/2. Let p be the kernel
of the Ox-homomorphism

_ A— 0O,

which sends ¢, (¢ € Z,") to ¢ 7. Then the map {14.13.1) factors through
H (Ve (F))p/PH Ve, (£))p. Since Lypy(f,k —r) # 0 by 135 (1) and 14.10.5,
we see that the image of 2% in H(Vi, (f)) is a Ap-basis of T (Ve (f))p. Hence
H2(VF, (f))p = 0 by Thm. 12.5 (3). Since

HZ[L/p], Ve, (F)(7) = B (Ve (1)) /0 (Ve () (1),

we have H*(Z[1/9], Vi, (£)(+)) = 0. This proves the finiteness of H2(Z[1/p], T).

We prove ranko, (E'(Z[1/p],7)) = 1 in the case r £ %/2. This follows from the
finiteness of H2(Z[1/p], 1" and HY(Z[1/p],T) = 0 by {14.9.5).

We prove the finiteness of S(T) in the case r > k/2. By the duality {14.1G.1),
it is sufficient to prove the finiteness of S{T*(1)) in the case r < k/2. Consider the
sequence (14.9.3} (we put K = Q). Sinee the image of z € H'(Z[1/p], VF, (f)(r)) in
the one dimensional Fj-vector space HYQy, Vi, (£)(r))/H} (@, Vi, (f)) is not zero,
the cokernel of

H (Z[/pl, T) — Hl(@py T)/H}(@pw )
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is finite. Furthermore, H2(Z{1/p], T} is finite as we have already seen. Hence by the
sequence (14.9.3), we obtain the finiteness of S(T*(1}).
We prove the finiteness of S(T') in the case » € k/2. Consider the part

(1413.2) 0 — S(I) — HYZ{1/p}, T @ Q/Z)
— HYQp, T @ Q/Z)/ Image(HH(Qp, V)
of (14.9.4) (we put K = Q). Since HY(Z[1/p],T) has Ox-rank 1 as we have seen,

HYZ[1/pl,T ® Q/2) has Oy-corank 1. The last group in (14.13.2) also has Oi-
corank 1 by 14.12 (1) (2). By the fact that the image of z in

HHQyp, Vi () () /HHQp, Vi (F)(r)
is not zero, the last arrow In (14.13.2) has finite cokernel. Hence we have the finiteness
of S(T).
We prove the finiteness of H2(Z[1/p],T) in the case r > k/2. By the sequence
(14.9.3), this follows from the finiteness of $(T*(1)) and the finiteness of H*(Q,, T).
We prove rankp, (H'(Z[1/p], 7)) = 1 in the case r = k/2. This follows from the
finiteness of H*{Z[1/p],T) and H(Z[1/p},T) = 0 by (14.9.5). a

14.14. We prove Thm. 14.5 (3).

Let p be the kernel of the Oj-homomorphism A — (), which sends (7, to 1. Since
A is a finite product of regular local rings, p is a principal ideal. Let o be a generator
of p. By the argument as in 13.8, we have an exact sequence

(14.14.1) 0 — HYT)/ a8 (T) — HYZ[1/p],T) — JA*(T) — D
and an isomorphism
(14.14.2) H2(TY /a3 T) =~ H(Z[1/p],T).

By Lemma 14.15 below which we apply by taking A as A and H2%(T} and
HYT)/Z{f,T) as M, we obtain from 12.5 (4)

#(H(T)/aBHT)) - #H (D)) < [HN(T)/eHY(T) : 2]

where 4( ) denotes Ker(a) and z is the image of zgf) under {14.13.1) for an Ox-basis
¥ of T(—r)~. Hence

#HHZ[L /0, T)) = #ET)/aH(T)) (14.14.2)
< #HYT)) - [HHT)/oaHNT) : 2]
= [HYZ[1/p],T): 2] ‘ (14.14.1).

Lemma 14.15. — Let A be a Noetherian commutative ring, let C be the category of
finttely generated A-modules M such that the support of M in Spec(A) is of codimen-
sion 2 2, and let G(C) be the Grothendieck group of the abelian category C. Let M
be a finitely generated A-module whose support is of codimension = 1, let a € 4, and
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assume that M, = 0 for any prime idesl p of height one which conicins a. Then
M/aM and M = Ker(a : M — M) belongs to C, and we have

[M/aM) - [M] = length, (Mg).[4/(q + ad)]
q

in G(C), where g renges over all prime ideals of A of height one which do not contain
a, and where || denotes the class in G{C).

Proof. — The A-module M has a finite filtration whose graded quotients satisfy the
following (i) or (i) :

(i) It belongs to C.

(ii) It is isomorphic to 4/q for a prime ideal q of A Of height one which does not
contain a.

Hence we are reduced to the case M itself satisfies (i) or (ii}. O
Proposition 14.16 (See Flach [Fla] for a more general study). — Let 7 € Z,1<r<

k—1. In the case v = k/2, assume L(f k/2) # 0. Let T be a Gal(Q/(Q)-stable
O -lattice of Ve, (F){r). Then

(1) #(S(T)) = #(S(T (1))

(2) Assume ¢ € k/2, let v € Vo, (f), and let £ = (—1)""", and assume ~% is an
Ox-basis of T{—r)% = T~ (—r) and let z € HY(Z[1/p], VE, (f)(r}} be the tmage of zE}’)
under (14.13.1). Then

#ET) =pt v -#H(Q T @Q/Z)) #(H(Q,T(1) @ Q/Z))

where

p = [HZ[1/p),T) : 2] - £ (Z[ /], 7)),
V= [ (QP':T)/H (qu } . Z] ) #(Hz (QP?T))il
Here in the definition of v, we denote the image of z in H(Qp, T)/HH(Qy, T) by the

saine letter z.

Procf. — By the duality {14.10.1), we may assume r < k/2 in: the proof of (1). Hence
we assume r £ k/2.

Consider the exact sequence (14.9.3) {we put X = Q). Since H{Z[1/p], 1) and
HYZ{1/p], T)/H}{Z[1/p},T) are of rank 1 over Oy and the latter is torsion free,
we have that Hl HZN/pl, T) coincides with the torsion part Q.7 @ Q/Z) of
HYZ[1/p], T)- Hence by the exact sequence (14.9.3), we obtain

#STN) =p™t v #H(Q T 9 Q/Z)) - #(I(QT7(1) ®Q/Z))
For a homomorphism A of abelian groups whose kernel and the cckernel are finite, let

[4] = #(Coker(h)) - #(Ker(h))
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Let a,b be the arrows as in (14.9.3), (14.9.4), Then the kernels and the cokernels of
a,b are finite as we have seen. By the exact sequences

0 — EMZ[/p], T)/HHZL /2, T) © Q/Z
— HYZ{1/p], T) ® Q/Z — HZ[1/p], T) — 0,

0 — B (Qp, T)/HL(Qy, T) © QT
— HYQy, T © Q/Z)/ Image(HHQ,, V)) — H2(Q,, T} — 0,
we have
(14.16.1) fa] - [B] = #(H*(Qp, TY) - #(T*(Z[1/p], T)) 2.

Consider the sequence (14.9.4). Since H?(Z[1/p],T) is finite, and since the p-
cohomological dimension of Spec(Z]1/p]) is 2, we have

B*(Z[1/p], T ® Q/Z) = BHZ[1/p), T) @ Q/7 = 0.
By the finiteness of S{T*(1)), we have that H3(Z[1/p], T*(1)) is finite and hence
H}(Z[1/p], T°(1)) = H(Z{1 /4], T*(1) @ Q/Z).
Hence by the exact sequence {14.9.4), we obtain

(14.16.2) H(S(T)) = b1~ #EO(Z{L/p), 77 (1) © Q/T)).
Omn the other hand, by the exact sequence (14.9.3), we have
(14.16.3)

#HS(T(1)) = la] - #HHZ[1L/p], T)) - #(H (@, TH ™ - #(HYZ[1/p, T (1) ® Q/Z)).
By (14.16.1), (14.18.2) and {14.16.3), we have

FHS(I)) = (ST (1)), a

14.17. We next relate the number » in Prop.14.16 to the Aadic absclute value of

(zeta value)/(period), by the method in [BK2, §4] basing on the theory of Fontaine-
Lafaille in [FL].

We review necessary things in [FL].

A filtered Dieudonné module D {called simply “fltered module” by Fontaine, and
called “Fontaine module” by Ogus) over Z, is & Z,-module of finite type endowed with

- a decreasing filiration (D*);ez where the D are direct summands of D,

- & family of homomerphisms ; : D — D,
satisfying the following (1)-(1ii).

{iy D" =D for i< 0 and D* =0 for 1 » 0.

(it) wilpivs = pois1.

(i) D= ¥up 05 DY).
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The category of filtered Dieudonné modules over Z, is abelian.
The condition (i} shows that there is a unique homomorphism

w: D —DQ
over @, such that ¢; or D* ® Q@ coincides with the restriction of p~ 4. This map ¢
is bijective.
To & filtered Diendonné module I satisfying the condition
{14.17.1) D?=D and D? =0 for some integers i,§ such that j —i <p,
Fontaine and Lafaille [FL] associated a finitely generated Zy-module T(D} endowed

with a continuous action of Gal((,/Q,), as follows. Take r € Z such that D"+ =0
and DTT%7P = D, Define '
(D)= Ker{l -7 : ﬁlT(BOO(Z—p/Zp) @z, D) — B (Z_p/zp) @z, ) Bz, ZP(*T)
where 7., is the integral closure of Z, in Q,,
817 (Boo Ty ) 92, D) = 3 I /By @ D7 C Bos(ZpZp) 2, D
30
(with notation as in 10.1)and ¢, is the unique homomorphism which coincides with
270 @ pry on J(Zy/Z) @ D" for 0 € i S p—2 (For 0 i< p—1,
since @(J(Zp/Zp)) C p*Boo(Zp/ZLy) and Boo(Zy/Lp) is torsion free [FM], p~
J(To /T — Boo(Zp/Zp) is defined.) Then T'(D) is independent of the choice of r
as ahave; for two choices v, such that r < v/, the canonical map z — " Tz @7
with ¢ a basis of Z,(1) is an isomorphism from T(D) defined by using r onto T(D}

defined by using r'.
By [FL], we have:

(1417.2) The functor D — T(D} for D satisfying (14.17.1) with fized i and j is
exact and fully fuithful. IF D satisfies (14.17.1) for (i,j) and D’ satisfies (14.17.1) for
(i, 5) (j—i < p,3' =4 < p), and if (j+5°)—(E+i") <p (resp. (7' =)= (F'+j—1) <p).
then

T(D ®z, D'} ~T(D) &z, T(D')
T(Homg, (D, D)) =~ Bomg, (T(D), (DY)

Here the filtered Dieudonné module D @g, L is defined in the evident way and
the filtered Dieudonné module Homg, (D, D) is defined by

Homgz (D, D'} ={h e Hosz(D, D'y, h(D¥) ¢ D for all 5}
0i(h) (h € Homg, (D, D')* Zzpj(:cj) (m; € DF) — Z%ﬂ ;).
{We will use these for Tate twists (a spemai case of tensor products) and for the dual

Homz,p( ,Zp).)
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(14.17.3) T(D)® Q is a de Rham represeniation of Gal(Q,/Q,) and the canonical
map T(D) — Byr ® D induces an isomorphism

Dar(T(D)®Q) — Daq
which gives an isomorphism of filtrations.

In the following 14.18, for finitely generated Z,-modules M;, My and for an iso-
morphism of Qy-modules

h:iM @Q— My 2@,
let [] (denoted also by [h: My —+ M3 ]) be the number defined as foliows. Take a
Zp-lattice M3 in My ® @ such that the image of My in My ® @ and the canonical
image of Ms in My ® €} are contained in M3. Define
[R] = #(Caker(h : My — M3)) - #(Ker{h : My — M3))™?
(Coker(Ms — M3))™ 1+ #(Ker( My — M)}

Then [h] is independent of the choice of Mj. In the case A comes from a Q-
homomorphism A : M; — My whose kernel and cokernel are finite, {h] = #(Colcer(h})-
#{Ker(h))~! = [h] with [h] as in the proof of Prop. 14.16.

Lemma 14.18. — Let I be a torsion free filtered Dieudonné module over Zy,, and
lei D' be the filtered Diendonné module Homg,, (D, Zy,)(1). Assume the following (i)
and {i).

(i} There are integers 4,5 such that i S0 <4, D' =D, D7 =0 and j —i < p.
(ify Themap 1 —w: D' @ Q — D' @ Q is bijective
Then
exp” : H'(Q,, T(D) @ Q)/H}(Qu, TID) 2 Q) — D' ® Q
is bijective, H2(Qp, T(D)} is finite, and
[exp™ + HY(Qp, T(D))/H}H{Qp, T(D)) -+ D) - #(H(Qy, T(D)))
=[1—g: D DY,

(The condition on 1—y of D'&Q) m Lemma 14.18 (ii) is equivalent to the bijectivity
ofl—ple ' D®Q — D®Q. We have

[1_‘10: D ?’D"] :[l—p_l(p_I. Do ;.D] )

Proof. — Lemma 14.18 is the dual formulation of [ BK2 Thrm 4.1} ; the map exp” in
14.18 is the Qp-dual of ‘

exp: D'/(D'° @ Q —— HH{Qy, T(D) @ Q,
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and hence is bijective by [BK2, Thm 4.1}, and H2(Q,, T{D}) ® Q is the Qp-dual of
HY(Q,, T(D"))} @ Q = 0. Furthermore [BK2, Thm 4.1 (iii)] shows
lexp: D'/(D')° v Hp(Qp, T )] =1 —p: D' DT -
Let
P =H'(Q,, (D) ® Q/Z)/ tmage(H' (Qp, T(D) @ @)
Then we have an exact sequence
0 — ' (Qp, (D)) /HH(Qy, T(D)) ® Q/Z — P — HA{Qp, T(D)) — 0.
By taking Hom( ,{}/Z) of this exact sequence and by using the duality
HHQ,, T(D") = Hom(P, Q/Z)

[BK2, Prop. 3.8], we obtain an exact sequence
0 — Hom(H*(Qp, T(D)), Q/Z) — H}(Qp, T(D))
— Hom(H"(Qy, T(D))/E}(Qp, T(D)), Zp) — 0.
From this, we have

[exp™ : HY{Dp, T(D))/H}(@P,T(Dj) ey DY

= [ D' /(D")° - Hom(HHQp, T(D})/H} (@, T(D)), Zy )]

=[1—p: D> D - #{HHQ,, TD)) U

Correction 14.19. — In this opportunity, we correct o mistake in [BK2, §4] : All H]
in Lemma 4.5 should be corrected as I}

14.20. Let p be a prime number which does not divide N. Then for any place A of
F lying over p, Vr, (f) i¢ a crystailine representation of Gal{Q,/Q,). Hence by [LG},
there exists an Ohy-lattice I of Deys(Vr, (F)) = Dar(Vr, (F)) which satisfies (DY) C
Pt for all § € Z (D =Dn Dig (Ve (£3)) and (D, (D%, (p~pon D)) is filsered
Disudonné module (Such D is called a strongly divisible Ox-lattice in Derys (Vir, (£1)).
If furthermore p > k, then T(D) C Vg, (f) is defined.

Proposition14.21. — Tet r € Z, 1 € v < k/2. In the case r = k/2, assume
L(f k/2) # 0. Letp be o prime number which does not divide N satisfying p > k,
and let ) be a place of F lying over p. Let D C Doryal( Vi, (f)) be o strongly divisible
O -lattice, and let T = T{D}r) C Vi, (F)(r). Let £ = (=1)"7", take w € Sp(f)
and v € Vr(f) such that w is an Oy-basis of D*(= D*~1) and +* is an O, -basis of
T(~r)* = T~(-r), and define Q € C* by per (w)* = Q- ~%. Let it and v be as in
Prop. 14.16 (2} (defined with respect 1o T and v). Then
(1) v =[O0y : (2m) " L{f* k —r)/Q].
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(2) #STE)) = w7 - [On ¢ Cri) Lk — 1)/Q] - #{HYQ, T @ Q/Z)) -
#I(Q,T*(1) ® Q/Z)).
Proof. — (2) follows from (1) and Prop. 14.16. We prove (1}). We apply Lemma 14.18
to the filtered Dieudonné module D{r). Let m = k — r. Then the filtered Diendonné
module D{r)’ = Homg,(D{r), Z,}(1) has the property that D{r)’ @ Q is isomorphic
t0 Derys Vi, (F*)(m)} as a Q,-vector space with an operator . Hence we have

[1 —g Dl D"] - [O)\ : detFA (1 7p7m;Dcry5(VFA(f*)))]
=[0x: 1T~ +E(pp*

By this and by

[Hl(Qp,T)/H}(QP,T) 2] [exp” : Hl(@p,T)/H}c(@p: T) oy D] = [D7 : exp* ().
we have
[D7 iexp™(z)] =0 [On:1—Ggp ™ +E(p)pkﬁl~w2m]_
On the other hand, since
per{exp™(2))F = (1 — Tup™™ + 2(P)p* 172 - L(F*, m) - (2m) "1y,

we have

exp™(z) = (1 - Bpp ™ + Ep)p* 1) ((2m)) LY, M) Q) - w.
This shows

D7 : oxp® (2)] = [0+ (1= Ty ™ + E{p)p =22 - (21 L(f*, m) /).
By comparing those two expressions of (D7 : exp*(z)], we obtain Prop. 14.21 (1). O

14.22. We complete the proof of Thm. 14.2. Let r be an integer such that 1 < r <
k— 1. In the case r = k/2, assume L{f, &/2) £ 0. We have already shown that S(T)
is finite for any finite place A of F and any Gal{Q/Q)-stable Ox-lattice of Ve, (F)(r).
It remains to show that S{T") is zero for almost all finite places A of F and for any
Gal(Q/Q)-stable Ox-lattice T of Vi, (£)(r).

By 14.16 (1) and by the duality (14.10.1), we may assume r < k/2. Let + =
(—=1)7*, take a non-zero element w of Sp(f) and an element v of Ve(f) such that
~F £ 0 and define 2 € C* by per;(w)T =0 yE

Take a multiple ¥ of &V such that N’ 2 3, and let X be a proper smooth scheme
aver Z[1/N'] such that X @ Q ~ KS;(N").

By Fontaine-Messing [FM], if p does not divide N’ and p > k, H¥ (X, Q%) ®
Zp has a structure of a filtered Dieudonné module whose filtration is given
by (HFH(X,07,) ® Zy);, and HF'KSy(N') &g Qp2Z,) is identified with
T(HRYX, 0%z) ® Zy) as a finitely generated Z,-module with an action of
Gal(@;/(@p). For such p and for a place A lying over p, let D, be the image of

(H*HX, Q%/z) ® ON)(E) — Dawya(Vi, (£)).
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{ (§) is as in §11) Then Dy is a strongly divisible Ox-lattice, Di = D’;_l is generated
over Oy by the image of

HF (X, Q5 E) — ().
and T(Dh) coincides with image of
(HF 1SR (N)(C), Z) @ 0x)(F) = (H* (KSp(N') @ Qp, Zp) 82, O2)E) — VR ().

Hence for almost all A, w is an Oy-basis of D} = D’f\"l, and ¥ is an Oy-basis of
T({Dy)*. For sach X, we have

FHSIT(D))) = o7 108+ (2rd) ™0 L{f ke —r)/€)]
(HG (@, T{Fr) @ Q/Z)) - #H(Q TR (1 - r) @ Q/Z))

by Prop. 14.21, where 4 is the number in Prop. 14.16 defined with respect to T ()
and v and Q is defined with respect to w and . We have

(O - @iy L L(#* B —7)/Q) = 1
for almeost all A, We have
HY(Q, T(F)(r) © Q/Z) = BY(Q, T(F\)" (1 -7} @ Q/Z) =0
for almost all A by 14.11 (2), and we have z > 1 for almost all A by 14.5 (3) in the
non-CM case {see 15.23 for the CM-case). Hence S{T(D,)} = 0 for almost all A. By

14.7, this shows that S(T") = 0 for almost all A and for all Gal(Q/Q)-stable O, -lattices
T of Ve, (F)(r). O

15. The case of complex multiplication

In this section, we prove the theorems 12.4, 12.5, 12.6, 14.2, 14.5 in the case f
has complex multiplication. We deduce them from the work of Rubin on fthe main
conjecture for quadratic imaginary fields. :

In this section, we fix an imaginary quadratic field K. We ﬁx also an embedding
K—C. :

15.1. We first Teview the work of Rubin on the main conjecture of imaginary
quadratic fields.

By the fixed embedding K C €, Q becomes the algebraic closure of K in C. Let
K% be the maximal abelian extension of K in C, and for a non-zero ideal f of Ok,
let K(f) ¢ K be the ray class field of conductor f. Fix a prime number p and &
non-zero ideal | of Ok, and let

K(p™f) = UK{p"), Gpei = Gal(K(p™)/K).

Then
Gpoos = Zp % Ly * {a finite abelian group).
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Let
bt = lim O [1/p]* @ Zp, b = lim CUK"){p}
i K
where K’ ranges over all finite extensions of K contained in K(p™f), CI(K"){p}
denotes the p-primary part of the ideal class group CI{K”) of K', and the inverse
limits are taken with respect to norm maps. Then h? (g = 1,2) are finitely generated
modules over the three dimensional semi-local ring Zp[[Gpees]]. h' is a torsion free
Z[[Gpoet]]-module having the property that (h*}, is of dimension one for any prime
ideals q of Zy[[Gpeg]] of height 0 (Z,([Gyees]]q is 2 feld for such g), and B2 is a torsion
Zp[Gpesl}-module (that is, it is killed by a non-zero-divisor of Zg[[Gpee;]]}. Let 3 C h!
be the “part of elliptic units” whose definition is reviewed in 15.5 below. Then §'/; is
& torgion Zp[[{Gpes]]-module.
The following Theorem is contained in the works of Rubin in [Ru2, Ru4].

Theorem 15.2 (Rubin). — Let p be a prime ideal of Zy[[Gpess]] of height one. Consider
the following conditions (a) (&} (c).
{a) p does not contain p. .
{b) p does not divide the order of the group of all the roots of 1 in the Hilbert class
field of K, and p does not divide the order of the torsion part of Gps.
{c) p splits in K.
We have:
(1) If either the condition {a) or (b) is satisfied, we have

lengthtz, fiGyee 1, {(6°)s) < lengthy e (07 /3)s)-
(2) If both the conditions (b) and (c) are satisfied, then

lengthy 1, 11, (57)p) = lengthy_fe .1 (51 /3)p)-

In [Ru2|, Rubin has an equality {not only inequality} even in the case p does not
split in K under a certain condition, but"we do not use it in this paper.

15.3. We review here the theory of complex multiplication.

Let f be a non-zerc ideal of O such that OF — (O /f)™ is injective,

For a field K’ over K, by a CM-pair with modulus f over K, we mean a pair (#, )
where E is an elliptic curve over XK' endowed with an isomorphism Ox —— End(%)
such that the composite map

Ox — End(F) — BEndgr(Lie(F)) = K’
coincides with the nclusion map, and « is a torsion pomt in E(K’) such that the
annihilator of o in O coincides with f.
Note that if (E,0) and (£',«') are CM-pairs of modulus f over K’ and if they
are isomorphic, the isomorphism (F, o) — (F',2') is unique by the injectivity of

Ox — (Ox/F)*.
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The following (15.3.1)-(15.3.3) summarize a central part of the theory of complex
mtiplication.
(15.3.1) There ezist a CM-patr of modulus f over K(f) which is isomorphic to
(C/f,1 mod ) over C. This CM-poair of modulus | over K(f) ds unique upto
isomorphism (and hence unique upto unigue isomorphism by the above remark).

We call the above CM-pair of modulus f over K{f) the canonical CM-pair over
K(5).
(15.3.2) Let K’ be o field over K and let (B, o) be o CM-pair of modulus § cver K.
Then there exist a unigue homomorphism K(f) — K’ for which (E,a) 48 obtained
from the canonical CM-pair over K(f) by the base change.
(15.3.3) (relation with class field theory) Let K' be a finite abelion extension of K,
let a be a non-zere ideal of Ox whose all prime divisors are unramified in K !, and
let o = {a,K'/K) € Gal(K'/K) be the Artin symbol. On the other hand, let (B, o)
be o CM-pair of modulus f over K and let (F'9} o{a)) be the CM-pair of modulus
over K’ obtained form (B, o) by the base change o 1 K — K'. Then (B9 o(a)) is
isomorphic to (E/oF, o mod oE) where F is the part of E annihilated by a.

We will denote the unique isomorphism in (15.3.3} as

e (BfoB, 0 mod (BE) =5 (B a(a)).

15.4. We give a refinement of Prop.1.3 in the case of complex multiplication. Let
K' be & field over K and lst E be an elliptic curve aver K’ such that End(E) =~ Og.
We pormalize this isomorphism in the way that the composite map

OK -:—> EIICI(E) — EndK:(Lie(E)) B K’

is the inclusion map.

Then for an ideal a of Ox which is prime to 6, there is a unique element .85 of
O(E ~ oEY* having the following properties (i} (if).

{i) The divisor of o8 is N{a} - (0} — . E.

(i) Nu(afg) = 85 for any integer a which is prime to .
The unique existence of .& and the following properties {15.4.1)-(15.4.3) of o0 are
proved in the same way as the proof of Prop. 1.3.
(15.4.1) If a = {c) for an integer ¢, o8 = 0.
(15.4.2) IfE — E' is an isogeny between elliptic curves over K’ such that End(E) =2
Oy and End(E") =~ O, the norm map sends o8z to oFp.
(15.4.3) Ifa and b are ideals of O which are prime to 6,

(02 (prilefe,)) " = (82)™ ) - (prilafe,))

where By = E/oE,Ba = EJoF, and for j = 1,2, pr; is the canonical projection
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Now let f be a non-zero ideal of O such that OF — (Ox/D* is injective, and let
(E, ) be a CM-pair of modulus § over X (F). Then for ideals 1, b of O which are
prime to 6f, we have (denate (a, K'(f)/K) by 7q and (b, K(f)/K) by 73)

(15,4.4) ([,BE(O:))N(“)TQ{[, 9‘5‘((1))71 = (QQE(Q))N([J)T&I(EQE(Q))*I

In fact, in {15.4.3), we have (pr}(sds,))(e) = s0r, (pr (@) = ra(s0z()) because
(E1,pri{a)) = (B9, g(a)) with o = 7, (15.3.3), and the similar thing holds when we
replace pr1, b, F1 by pra, a, B, respectively. Hence we obtain (15.4.4) from {15.4.3}.

15.5. We review the definition of the “part of elliptic units” 3 C h? in 15.1
Let § be an ideal of Ox such that OF — (Ox/f)* is injective, let {F, o) be the
canonical CM-pair over K(f), and o be an ideal of Oy which is prime to 6f. Then the
element;
alf = u@g(&)*l 3 K(f)x

(the standard eiliptic unit of modulus | and of twist a) has the following relation with
L-functions (Kronecker’s limit formula): For any homomorphism y : Gal(K (f)/K) —
C*, we have

(1351) > (o) log|oazs)| = (V{a) (@)™ - lim 57 Lie s, <)

where L ¢(x, s) denotes >, x(6)N(b)~* in whick b ranges all ideals of Oy which are
prime to f and x(b} denotes x((b, K(f)/K}). {This (15.5.1) is deduced from (3.8.2)
by taking a suitable element of K as = in (3.8.2).)

The clement o9z(a) is a p-unit for any prime ideal p of Ox which is prime to §,
and is a unit if { has at least two prime divisors.

Now we define 3 C H'. Let | be a non-zero ideal of Ox. Then for n 3 1 such
that Og — (Ox /p"f)* is injective and for an ideal a of Ox which is prime to 6pf,
the norm map of K (p™*f)/K(p"f) sends azyn+1; t0 czpns. (This is deduced from
(15.4.2).) We define 3 to be the Zy[[Gpwi]]-module of §! generated by the elements
(a#pnf)nz1 where a ranges over all ideals of O which are prime to 6pf.

15.6. We rewrite Thm. 15.2 in the form using Galois cohomolegy.
For a finitely generated Z,-module 7' endowed with 2 continuous action of
Gal(K /K which is unramified at almost all finjte places of &, let

Hpooy(T) = liKL{lHq(Okf 1/, T)  (q€Z)
where K’ ranges over all finite extensions of K contained in K (p™7). Then Hy. (T)

is 2 finitely generated Z,|[Cpog]]-module, and Hi. (T) = 0if ¢ # 1, 2.
In the case T' = Z,(1), we have:

(15.6.1) Bt o HDw (7,(1)).
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(16.6.2) There exists o homomorphism of Zp[iGpe;|l-modules
b — Hf,xf(Zp(l))
whose kernel and cokernel are finitely generated Zp,-modules. In particular,
(%) = Hpee(Zp{1))s
for any prime ideal p in Zp[[Gpeos]| of height one.
{(15.6.2) is proved as follows. From the Kummer sequence

0 — Z/p"E(1) — Gy -2 Gy = 0,

we obtain exact sequences

0 — Pic(Og, [1/9]){p} — H*(Ox:[1/p], Zp(1)) — lim Ker(p™; Br(Oxer [1/p])) — 0

for extensions K’ of @. We have an isomoerphism

lim Ker(p™; Br{Ox-[1/p))) = Ker(sum : Z; — Zy)

where T ig the set of prime ideals of O lying over p, and we have a surjection
CI{K"){p} — Pic(Ok-,[1/p]} whose kernel is generated by the classes of elements in
Y. By taking lim ., for finite extensions K’ of K contained in K (p*f), and by the
finiteness of the number of places of K (p™f} lying over p, we obtain (15.6.2).)

Let Q(Zp[[Gpeel]) be the total quotient ring of Zy[[Gpes]]. We define an element

2peop € Hlot(Zy (1)) D, [[G )] QZpl[Gposs]])
{without q( )) by

Zpos = (N(a) = (0, K(p™N/E)) ™" (azpmi)n
€ 9" Dz, 116 00l @ (L ([Gooof]]) = Hyme f(Z(1)) @2, (G pl) @Zpl[Geil)
where a is any ideal of Ox which is prime to 6pf such that u # Ok (then N{a} —
(a, K(p™f}/K) is a non-zero-divisor of Zy{[Gpees]]}. Then zpes; is independent of the
choice of a, for
(N (o) — (0, K(p™N/K)) - (azpni)n = (N (@) — {8, KETH/KD) - (v2pm1)n
for any ideals a, b of Oy which are prime to 6pf by (15.4.4).

We have :

(15.6.3)  (N(a) — {8, K(pF)/ K)) - zpoos € Hpo ((Zp(1)) for any ideal a of Ox which
is prime to 6pf.

The ideal T of Z,[[Gyeos]] generated by N(a)—(a, K(p™f)/K) for all ideals a of Ox
which are prime %o 6pf satisfies [, = Z[[Gpwoy]]p for any prime ideal p of Zp[[Gpoe]]
of height one. Hence we have
(15.6.4) 3p = Zyp[[Gpooflln - 2pocs for any prime ideal p of Zp[[Gpeet]] of height one.

By (15.5.1), we have
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{15.6.5) Let K’ be a finite extension of K contained in K(p™f), and let zg be the
image of zpes under S'lHémf(Zp(l)) — HYOg [1/p], Qp(1}) where S denotes the
multiplicative subset of Zp|[Gpes]] consisting of non-zero-divisers whose images in
Qp[Gal(K'/K)] are invertible. (Note N{a) — {a, K(p™f)/K) € § for any ideal o of
Oy which is prime to pf such that a £ Ox.)} Then zi belongs to the image of the
canonical injection

(Orr[1/p])* © Q@ — HY(Ox [1/2], Qp(1)).
If we regard zx: as an element of (O [1/p])* @ QQ, we have
3 xlo)logllo(zx))) = lim 571 L pi(x, 5)
oeGal(K/ /K
for any non-trivial homomorphism x : Gal(K'/K) — C*.

Now Thm. 15.2 is reformulated as follows: For a prime ideal p of Zy[[Gpeq]] of
height one, let

4 = lengthy (100,11, (Hyee{(Zn(1))p/ (Zpl[Croeillp - 2p001))
23 = lengthy (o)), (oo {{Zp(1))p ).
Then, if either the conditions (a) or (b) in 15.2 is satisfled, we have
&< Ly
If bath the conditions (b} and (¢} in 15.2 are satisfied, then
&=,
15.7. We review basic facts about Hecke characters of K.

Let O = lﬁi_rﬂ_nf Ox /I where I ranges over all non-zero ideals of O, and let K =
C’); ® (). Then the adele ring of K is C x K , and the idele class group Cx of K is
({C* x K™)/K*.

If b is & Hecke character of K (i.e. a2 continuous homomorphism Cx — C*), the

homomorphism 6-;;)( — €% induced by + factors through the projection @X —
{Og /I)* for some non-zero ideal [ of O, and there is a non-zero ideal which is the
largest among such ideals I, called the conductor of @b If a is an ideal of O which is
prime to the conductor of 4, we define v(a) to be ¥(1, a) where 1 is the unit element
of C* and a an element of K * 05;2 such that @a e 6}_ - and such that the image
of @ under O — Ox/f is 1 (then (1, a) is independent of the choice of a). The
L-function L{, s) of 1 is expressed as

L{p,s) =Y _w{a}N{a)~*

where a ranges over all ideals of O which are prime to the conductor of 1.
For integers m,n and for a Hecke character 4 of X, we say that 1 is of type (m, n)
if the restriction of ¢ to the archimedian part C* of the idele group of K has the
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form z — z™ -Z". It is known that if i is a Hecke character of type {m,n) for some
integers m,n then the subfield of C generated by 4(K ™) is a finite extension of Q.

15.8. Let r 2 1, and let % be a Hecke character of K of type {—r,0). We review the
Galois representation, the period map, etc. associated to .

Let L be the subfield of C generated by v,b(l? “) over K/, which iz a finite extension
of K. In this 15.8, we define a one dimensional L-vector spaces V(1) and S(4), and
a continuous Ly -linear action of Gal(K /K ) on Vi, (1) = Vi.(¥)) @ Ly for each finite
place A of L. We define also an L-linear map

per,, : S{(¥) — Ve{y) = Vi(¥) @1 C,
called the period map, and an isomorphism
(15.8.1) Sy ®p Ly = Dip{K @ Qp, V1, (¥)) = D (K @ Uyp, Vi, (¥})

for each finite place A of L where p is the prime number lying under A.
Take a non-zero ideal f of Ok contained in the conductor of 4 such that Of —
(Ox /)™ is injective, and let (F, ) be the canonical CM-pair over K (f) {15.3}.
We define
Vi (¥) = H'(B(C), Q) @x L
where ®r is taken over K.
For a finite place A of L, we have a canonical identification

Vi, () = HL(E @xg Q, Q)% Oxeq, In
where Vi, (%) = Vi.(4) & L, p 1s the prime mumber lying under A and &7 is taken

over K @ (J,. Hence we have an Ly-linear action of Gal{Q/K () on Vi, (). We
extend this action to an Ly-linear action of Gal{Q/K) on Vr,(¢) as follows, For

o € Gal{Q/K), we define the action of o on Vz, (%) to be the composite

— i
Vi () -2 (B @55 T Qo)®” ®rpa, Ln —om Vi, ()

where 7y is the following isomorphism. Take an ideal o of Og which is prime to f
such that {a, K{f)/K) coincides with the restriction of & to K(f}. We define 5y =
()~ (n5)®" in which 1] denotes the pull back on Hy, by

B — E/,E -2 B@ (153.3).

Then 73 is independent of the choice of a.

This action of Gal{Q/K) on Vp, (2} is abelian, and described by class field theory
as follows. Via the reciprocity map K /K> = Gal{ K®/K) of class field theory, the
imageofa F* in Gal{ K2/ K) acts on Vy,, (¥) as multiplication by afy{a)~!, where

" 2 is the place of K lying under X and a, denotes the v-component of a. Another class
field theoretic description of this action by using Artin symbols s the following. The
action of Gal( K%/ K) on Vi, (1) factors through Gal(K (p°°f)/ K}, and for an ideal o
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of O which is prime to pf, {a, K (p™f)/K) acts on Vi, {4) as the multiplication by
W)t |

Next we define S{4) as an L-subspace of coLie(E)®" @ L such that S(#)@x K(f) =
coLie(BY®" @ L, in the following way, where @r is taken aver K(f).

We define an I-linear action of Gal(K{f)/K) on coLie(E)®" @k L such that
alaz) = ola)o(z) for a € K{f) and z € coLie{E)®" @y L by the following rule :
o € Gal(K(f)/K) acts as the composite

coLielEY® @ I 781 colie(F@) @ T s coliel B) @x L

where 1y is the following isomorphism. Take an ideal a of O which is prime to §
such that o = {a, K(f)/K). We define

e = (@) (n2)®" coLie{ BN ® @ L 25 coLie(B/ B3 @r L = coLie{ BY? " @i L

where the last identification is by the canonical isogeny F — E/ E. Then 1y i3 inde-
pendent of the choice of a. Now we define ${¢)} to be the fixed part in coLie(F)®" @k L
under this action of Gal(X(f)/K).

We define the period map

pery : S{¢) — Ve (¥)

as the map induced by the period map coLie{®) — HH{E(T), C).
Finally we define the isomorphism {15.8.1). For any finite place v of K lying

under A, Vi, (¢} is de Rham as a representation of Gal(K,/K,) because it is de

Rham as a representation of Gal(K(f), /K {f).,) for any finite place w of K(f) lying
over v. We have

Dar{EK(f) ® Qp, T (E ®xc(y K1)y, Qp)) = Hip (B/E()) @ Dy
and this induces
Der (K () @ Qp, Vi (9)) ~ Hin(EB/K(]))®" @x L
where ®r 13 the r-fold tensor power as an invertible module over K @ K{(§) (K acts
via K ~ End(E) ® @ and K(f} acts because it is the base field). This induces
D (K5} ® Qp, Vi, () = coLie(E)®™ @ L, for1gj<r
(the left hand side does not depend on J such that 1 < j < r) where @r is taken over
K(f) and coLie(F) is regarded as an K (j)-subspace of Hip (E/K(f)). By taking the
Gal(& (f)/ K)-invariant part of the both sides of the last isomerphism, we have
Dl (K ©Qp, Vi, (9)) = S(@) @ Ly for 1< <7

In the above constructions of Vi, {4#), S(1)), etc., we fixed §. However every construc-
tion does not depend of the choice of f in the following sense. If § is another ideal
of O which is contained in the conductor % and (E', o) {resp. (E”, o)) denotes
the canonical CM-pair over K (f') (resp. K(ff')), E is identified with E" /& E" and £
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is identified with B"/;E". Via the isomorphisms induced by the canonical isogenies
E" — F and E" — E', we can identify constructions using § and constructions .

Proposition 15.9. — Let v 2 1 and let 4 be a Hecke character of K of type (—r,0).
Let p be o prime number, let f be ¢ non-zero ideal of O contained in the conductor
of ¥, let K be a finite extension of K contained in K (p™f), and let v € V(1) Then
the image of zpees under

Hoop(Zp(1)) 2. Hoo {Z,,(1)) © Vi, () = Hpeo (Vi () (1)) —
exp”

Y (Ose /8], Ve () (1)) 22 DI (K9G, Via () =2 | (SWI@n )@ K

is an element of S(v) ®x K’ whose image under

S xle)peryoo: S(¥) @x K — Vo(w)
o€Gal(K!/K)
coincides with Lpi(iF,x,7) - v for any homomarphism x - Gal{K'/K) — C*. Here
Lot(4, x, ) denotes 3 vlax(a)N (a)~* i which o ranges over all ideals of O which
are prime to pf.

Proof. — This 15.9 is proved in [KK2, Chap.III, § 1] under certain assumptions. The
proof of 15.9 here follows the method there.

By using the trace maps, we see that we may replace & " by any finite extension
of K’ contained in K (p™®f). Hence we may assume K’ = K({g), where g is an ideal
of O having the form p™fg, where m 2 1 and fp is the smallest ideal of O which
divides f and which is prime to p, and such that g © fand O — (O /)" is injective.

Let (B, @) be the canonical CM-pair over K" = K(g). Let 5 € H (F(C), Q) be
the image of 1 € K under the canonical K-isomorphism K = Hy (C/ g, Q) which is
induced from the canonical isomorphism g == H;{C/g,Z). By the K-linearity, it is
sufficient to prove 15.9 in the case v = g9

The image of p™5 in Uy (B{C), Qp)} = T,E®Q is an O @ Zy-basis of T, & which we
denote by £ == (&n)nzo (& is the Ok /p™-basis of ;» E corresponding to £). We define
torsion points o, and v, (n 2 0) on E as follows. For nn 2 0, let o © E(K(p™0))
be the image of p™ "8 in Hi(E(C),Q/Z) = E(Clior- S0, & = cp. Forn 2 0, let
Uy, = En — 0tp. Then v, is killed by fo and belongs to E(K"). Let 0 {z) = af(z 4+ 1),
We have 0,(£,) = of(@,). Furthermore Np{Opp1) = b forn 2 1.

By the assumption g C §, the action of Gal(K ab /K'Y on TyE for any prime £
is unramified at any finite place of K’ not lying over £. Hence [ST], £ is of good
reduction at any finite place of K.

We apply the generalized explicit reciprocity law [KK3, Thm. 4.3.1]. (We apply
the case of height A = 1 of this theorem, though we applied the case h = 2 of this
theorem in §10.) For a place v of K’ lying over p and for a prime ideal p of O
lying over p, let G(v,p) be the part of the Néron model of B over O, killed by some
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power of 9. Then ({w, p) is a p-divisible group over O, and the triple (K, G{v, 1), Op)
satisfies the assumption of the triple (K, G, A) of [KK3, Thm. 4.3.1] with & = 1. By
applying this theorem to (K, G(v,p),0p) for all v and p as above, we obtain the
following result: The image of

8 @ (Bn(6n))n € (TpE)® ) @ lim H (Oge ey [1/01, Zp{1))

n

under the map

(T,EY®C @ Him HY O oy [1/2], Zo(1)) — EmH (O e [1/5], (ToF)® (1))

D HY K ® Q, (TE)® (1)) —Ees coLie(E)®T @ Qp
colncides with
P = 7 (2 log(0m) ) 6} @ 0
w . m

where w is a K'-basis of coLie(E). This means that the image of 8-l g (Br(&n))n
under

Vi () © Hpw (Zo(1)) — Hpwy (Vi, (9)(1)) — H Ok [1/p], V2, (4)(1))

P DIp (K ® Qp, Ve, () = (SW) ¢ Ly) @k K

coincides with p™™" + (r — 1)1 7" - ({£)" log(fm)) (£m) @ w®". Hence the image of
BT @ (a8(en))n = 0™ €277 @ (Buln))nz
inl(S(tf)) Qr K @r Ly is equal

d
(r = 7 - (=) log(fm)) (§m) @ 057

_ —1 d T A 2]

— = {(5) logaf) Jam) @ 0" € S() i K.
Hence we are reduced to the following (15.9.1). O
(15.9.1} Let

oz = (r =1t ((g)rlog(uﬂ))(am) 2w € S(y) @k K.
Then,
> x(e)per, (o(e2)) = (N(a) — w(a)x(a) ™) Lop (9, . 7)85
{o ranges over Gal(K'/K)).
(This (15.9.1) shows
(15.9.2) For z = (N(a) —9{a)o) ™ az, 32, x(0) pery(o(2)) = Lys(, %, 7)5%0 7))
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Proof of (15.9.1). — Let o € Gal(K'/K) and fix an ideal b of O which is prime to
g such that (&, K'/K) = . Then

d.r

olez) = (Bt ((;) log a0z uE) (@ mod pE) @ w®.

By the analytic theory of Eisenstein series in 3.8, this is equal to
Nay(e)™ 3 (@2 e 30 (@A)

ceP(b) B € P(ab) B
where P{J} = {c € K; c=1mod J~*g}. Let Q(J) be the set of ideals T of O such
that [ is prime to g and such that (I, K'/K) = (J, K'/K). Then as is easily seen, we
have a bijection ¢ — ¢J from P(J) to @{J), and 9{cJ) = ¢™¢(J) for ¢ € P(J). Hence

olaz) = Na) D (D)7 N(1)=2p=
() :

s=f}

() > p(I)TINI)T e
TEQ{ab)

s=0

=N Y ROV e
Teq(h)

—dla) Y BDONI)TEECT
IeQ{ab)
(since Y(I) (1) = N{I)7). This proves (15.9.1). [l

a=7

15.10. In the vest of §15, assume f has CM. Then L{f,s) = L{+, s} for a Hecke
character ¥ of an imaginary quadratic field A of type (1 — %,0} whose conductor
divides N. We denote the conductor of ¥ by §.

The field F = Qfan;n = 1) is contained in L = K{%(K™}) as is seen from
L{f,5) = L{4, 5). B

Let A be & finite place of L. Then, as a representation of Gal{Q/Q) over L, Vi, (f)
is isomorphic to the representation

Vi () = Vo, (¥) & Vi, (%)

induced from the representation Vi, (#) of the subgroup Gal{Q/K) of Gal(f3/Q). Here
¢ € Gal(Q/Q) denoctes the complex conjugasion, and the action of ¢ € Gal(Q/Q) cn
Vi () sends (z,wp) (z,y € Vi, (&) to (o(z), leoe){y)) if o belongs to Gal(Q/K),
and to ((ere)(y), e7(z)) if o = o7 with 7 € Gal(Q/K). This can be seen by comparing
the sigenpolynomial of Frobenius of each prime number which is prime to N. (See
[Ri2])

Lemma 15.11. — Fip an isomorphism of one dimensional L-vector spaces

(15.11.1) S() =5 S(f) @r L.
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Then:

(1) For each finite place A of L, there exists o unique isomorphism of representa-
tions of Gal(Q/Q) cver Ly

(15.11.2} VL W) 5 Vi, (f)
such that the composition
15.8.1
stwyor Ly 2B Dtk 0.0, Vi, (1) = Din (Vi ()

~

(15.11.2)

~

Dir{Vi, () = (/) ®F La

coincides with the isomorphism induced by (15.11.1}.
{2) Let
Vi () = Vii) & oV () (v = the complex congugation)

be the representation of Gal(C/R) over L induced from the trivial representation Ve ()
of the subgroup {1} of Gal(C/R), and denoie the compesite S(af) — Vi{e) — V()
also by per,,. Then there exists a unigue isomorphism of representations of Gal{C/R)
over L

{15.11.3) Vi (W) —= V()
for which the diagram

per,,
S(%) Ve (i) = V() e C
(15.11.% J(15.11.3)
S(f @r L Py Ve(f)

5 commautative

Proof.
(1) Take any isomorphism % : V77 (¥) — Vi, (f)} of representations of Gal{(j/Q)
over L. Then h induces

Dar(VE, () - Dar(Ve, ()
and hence
_ = () @ Ly — S(f) ®r La
which is ¢ times the isomorphism induced by (15.11.1) for some ¢ € LY. The iso-
morphism ¢ A is the desired one. The unigueness follows from the irreducibility of
Vi (1) as a representation of Gal{Q/Q) over Lj.

(2) Fix a sign £. Identify S(¢) with S(f) ®@# L via {15.11.1). Tt is sufficient to
show that there exists an isomorphism of one dimensional L-vector spaces

R e )
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such that o perjj = per?. Here
1+

peri—- o + 144
v perw, perf = Opel'f .

By 6.6, 13.5 and (15.9.2), there exist m > 1, elements
2 € 8 @ Q(n), 2 € 8(f) @ Q¢m),

and non-zero elements
vEVIW)E, A € Ve(H)E,
satisfying the following (1} (ii).
{1} For any character ¥ : Gal{(Q({,)/Q) — C* such that x(—1) = &,

> xlo)per(o(z)) = Ls{d, x. & — 1),
> xle) per¥(a(z')) = Lelf, .k = )7,

where o ranges over Gal(Q{(n)/Q) and S = prime{mN).
(ii) There exists a character x : Gal{Q{{n)/Q) — C* such that x(—1) = £ and
such that Lg(t,x, bk — 1) = Lg(f, x, k — 1) 18 not zero.

By {ii), there exists gy € Gal{Q((,)/Q) such that the image of op(z) under

5(%) ®g Wlém) — S(¥) @1 L{Gn)
is not zero. Let b be the element of L{(,,) such that the image of op(z') in

S{f) @F Lim) = S(¥) @1 L{m)
is b times the image of gg(z). We will show that b is a non-zero element of L. The
L-linear map ’

R Ve — Va(f)*
which sends -y to 5% satisfies ho perj = perjf. Now we prove b € L*. From (i} (by
taking 3, x(ry~1 ((3) for %) where x ranges over all characters Gal(Q((m)/Q) — C*
such that x(—1)} = %), we see that for each o € Gal{Q((x)/Q), there exists ¢, € C
such that
pery {o(2) * ou(2)) = o perf(a(z’) +oz")) =o',

where ¢ is the complex conjugation. For o = Tog with 7 € Gal{L{(m)/L), we have
¢ # 0 and

7(b) -per?(a(z) +ou(2)) = o'
Hence b £ 0, and 7(b) is independent of = € Gal(L{(x,)/L). This shows b€ L*. O

In the rest of § 15, we fix an isomorphism (15.11.1). In what follows, we identify
S(¢) and .S'(f);@)p L via (15.12.1). We also identify the representations V7 () and
Vi, (f) of Gal{@d/Q) via {15.11.2) for any finite place A of L.
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The “philosophy of motif” tells that the isomorphism (15.11.3) should be compat-
ible with our identification (15.11.2}, but I can not prove it. (The problem ig that in
the case k 2 3, it is not known that the motif associated to f [Scl] and the motif
associated to v coincide. Here, the former motif is a direct summand of the motif as-
sociated to the Kuga-Sato variety, and the latter motif is obtained from the (k—1)-fold
tensor power of the motif associated to an eiliptic curve with complex multiplication.)
So to aveid the confusion, we will never use (15.11.3) as identification.

15.12. Let ) be a finite place of L. Then we have a canonical homomorphism of
O [[Gpeos|]-modules
(15.12.1) Hpeg (Ve (9)) — B (Vi (F)

since
H(Vy, (F) = H' (V5 () = (lim H'(Oxeor, [1/7, 1)) @ Q
where T is any Gal({j/K)-stable Oy-lattice of V7, (1), and since we have a canonical

_ homomorphiam

K @ Q=) — K™
By 15.9, we have:

(15.12.2) Lety € V() and let ' € VL(f) be the image of v under the isomérphz’sm
{15.11.3). Forn 2 0, consider the composite map

AISAZY g )

— HY(Qp(Gon ), Vi, (F(1))
T DR (Via () © Q)
= 5(f) ®p L & Ql{pn ).

Let 8 be the set of non-zero-divisors of Zp||Gpeil] whose images in Qp[Gal(Q(Gpr )/ Q)]
are invertible. Then the induced map

ST HLwg(Vi, ()(1)) — S(f) @r La ® Q{Gr)
sends zpeej @ 7 to on element of
5(f)@r L& Q(Gr)
whose image under 3__ x(c) per; oo, where x is any homomorphism
Gal(QGpm )}/ Q) — C©
and o ranges over Gal(Q((n)/Q), coincides with
L k=100, £=x(-1)

Hye (Vi () (1)
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Lemma 15.13. — Let p be a prime number and assume K is not contained in Q({p-).
Let f be the conductor of wp, A the torsion part of Gge=j, A a finite ploce of L lying over
p, p a prime ideal of Ox[[(Foc]], and q the inverse image of p in O\[[Gpeet]], under the
surjection O\ [[Gpeei]] — Oal[Gooll. Assume thal 2 and the order of A are invertible
in the residue field of p. Then:

(1) Ox[[Gollp and O[[Gpeeslly are regular rings, and the kernel of Ox[[Gyreills —
O:[[Goollp 12 @ principal ideal. _

(2) Let a be a generator of the principal ideal in (1). Let T be o Gal(Q/K)-stable
Oy-lattice of Vi, {#) and let T~ =T @& T <V (4).

Then we have

(15.13.1) HZoo (T)q/aBl2oes(T)g = HA (T}

P

and an eract sequence

(15.13.2) 0 == Hlur(T)q/aM e (T)g — H' (1), — Ker(o; Hows(T))q — 0.
Proof. — Congider the exact sequence of representations of Gal{Q/K)

0 — T ®0, Oal[[Gpeef]] -2 T @0, Ox[[Cpmil] — T ®0, Oaf[Gooll — ©

where o € Gal(Q/K)} acts on O)[[Gpes]] (resp. Oa[[Geol]) by the multiplication by
the image of a1 in Gpees {resp. Goa ). Let v be a finite place of K which does not lie
over p, and let T, < Gal(K,/K,) be the inertia subgroup. Then the cokernel of

HO(IL’: T ®o, OA[[G}J“’?”) — HO(IW r B0, 5% [[GDC]D

is killed by the order of A. This is because the action of I, on T ®g, Ox[[Gp=il]
factors through a homomorphism I, ~+ A C Gpeos. Hence if j denotes the inclusion
map Spec(CUx|1/pfl) — Spec{Ox|1/p|), the cokernel of the last arrow of the exact
gequence

0 — 3o {Os[[Cpeil]) = Ju(Os[[Gomeill) — 4 (T @0, OA[(Goo]))
is killad by the order of A. Hence this exact sequence induces an exact sequence
0 — Hloo i (T)q == HLo (1) — HYT™),
o Hioo (T 2 B2 (T)g — HHT™), — 0. m
15.14. In the case K € Q{(p=), Lemma 15.13 is modified as follows. Let G, =
Gal{Q({p=)/K) C Goo, and let HY(T) = lim HY(Z[(pm, 1/p|,T). Then B4(T™) =2

HUT) @0, (¢ Oa[Gol]l. Lemma 15.13 holds when we replace Goo by G, and
H#(T™) by HYT).
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15.15. We prove Thm. 12.4 for f.

Omnce we prove Thm. 12.4 (1} (that FI*(Vp, (f)) s a torsion O, {[Guo]]-module), we
can deduce Thm. 12.4 (2) (3) from it by the argument in 13.8. We prove Thrm. 12.4 (1).
Let v be a place of L lying over A. Since H*(Vr, (f)) ®0o, Oy =~ HAV[ (4)}, it is
sufficient to prove that H*(V7" (1)) is a torsion Ou[[Goc]]-module. Now by writing v
as A, let A be a place of I Iying over a prime number p.

We first assume K is not contained in Q((pe ). In lemma 15.13, let ¢ be a prime
ideal of height 0 of O5[[Gw]]. Then q is a prime ideal of height 1 of O4[[Gp=3]]. By
13.5 and (15.12.2), the image of zpes @ Vy, {¢0)(—1) under

Hioo; (Vi ())q — T (Vi ()

is not zero. Since H].. Vi, (¥))q s 8 free Ox[[Gpesj]lq-module of rark 1, this shows

that the Ox[[Gpellg-module F1..(V;, (#)), is generated by the image of zywe; @

Ve, (#). Hence by the theorem 15.2 by Rubin, we have How (Vr, (¥))q = 0. Hence

by (15.13.1), (V7 (1)), = 0. This shows that H2(V] (4)) is a torsion O{[Goo]]-
moduie.

The proof for the case K < Q({p~) goes similarly by using 15.14 instead of 15.13.

[

15.16. We prove Thm. 12.5 and Thm. 12.6 for f in the case K is not contained
in Q{(p=). Since we have already proved Thm. 12.4 for f, Thm. 12.5 (1) (2) and
Thm. 12.6 are proved by the same arguments in 13.9-13.13.

Next we prove Thm. 12.5 (3) (Thm. 12.5 (4) does not exist in the case with complex
muitiplication). By {15.12.2) and Thm. 12.4 (2}, we have

(15.16.1) Lety € Vi (2p) and let ' be the image of v in VL(f) under {15.11.3). Then
the homomorphism (15.12.1} sends zpe ® ¥ & (Con -t 4o zEff).

Hence 12.5 (3) is reduced to

Proposition 15.17. — Let X be o finite place of L lying over o prime number p, let p
be a prime ideal of O\[[Gol} of height 1, and assume either (o) or (b) in Thm. 15,8
is satisfed. Let T be o Gal(Q/K)-stable Ox-lattice in Vi, {4} ond let Z{1p,T), be
the Zy[[Goollp-submodule of B (T™), generated by the image of zp=; ® T(—1) under
HL . (T) = HYT™),. Then

lengtho, o7, gy, (A (T™)p) < lengtho, o, (H(T™)s/Z(%, T)p).

Proof. — Agsume fizst K is not contained in Q{{p). Let q be the inverse image

of pin Oif[Gp=fll. We apply Lemma 11412 to A = O4[[Gp=flly and to the A-

modules H2o.;(T)q and B o ((T)q /A-(zpee1®T(~1)). Then by (15.13.1) and {15.13.2),
Prop. 15.17 follows from theorem 15.2 of Rubin. )

The preof for the case K C €= ) goes similarly by using 15.14 instead of 15.13.

O
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15.18. We can prove Thm. 14.5 (1){2) for f by using Thm. 12.5 (3) in the same way
as in §14. {Thm. 14.5 (3) does not exist in the case with complex multiplication.)

15.19. Here we give the proof of Lemma, 14.7 in the case f has complex multiplica-
tion.

The following fact is proved easily : For a finite dimensional vector space V over a
cotuplete discrete valuation field P and for a finite extension P’ of P, the canonical
map

{Op-lattices in V}/ ~ — {Op:-lattices in P @p V}/ ~

is injective, where the first ~ (resp. the second ~) is the equivalence by multiplications
by P* (resp. (P')*).

Take an ideal a of Ox which is prime to N such that ¢(a) # ¥{@). We show
that the condition in 14.7 is satisfied by all finite places A of ¥ which de not divide
{1(a) ~+p(a))N(a). By the above remark, we may assume P D L, for scme place v of
L lying over A. Let e be a P-basis of Vp({2)), and let T be a Gal(Q/Q)-stable O p-lattics
of Vo {4) {= V&, (f) ®F, P). We show that "= o - (Ope + Opte) for some ¢ € P¥,
Let aze + agte € T (@, € P). Let p be the prime number lying under A. By applying
(a, K(p™§)/K) to aie + azie and by using u(a, K (p@f)/ K} = (& K(p™f)/K), we
have ¢(a)2are + W(@) " tagee € T. (Note ¢(n),%() € OF as is easily seen.) By
() — (@) € OF, we have a;e € T. By applying ¢, we have aice € T. Similarly we
have ase, agie € T. This shows that T = a - {Ope + Opie} where a is a generator of
the fractional Op-ideal generated by all a;,as € P such that a1e + ase € T,

Lemma 13.20. — Almost all finite places X of F have the following property: For any
Gal(Q/Q)-stable Oy-lattice T of Vi, (F), T/maT is irreducible as a representation of
Gal{Q/Q).

Proof. — By 14.7, it is sufficient to prove that for almost all finite places A of L and for
any Gal(Q/ K )-stable lattice T of Vi, (4}, T /my T is irreducible as & representation
of Gal((}/Q). Take an ideal a of O which is prime to & such that 9{a) # (). By
the similar argument as in 135.19, we can see that any finite place A of L which does
not divide (3(a) — ¥{@))N (a) has this property. |

Proposition 15.21. — Almost all finite places A of F' have the following property: For
any Gal(Q/Q)-stable Oy, lattice T of Ve, (f),

Z(,T) CHYND) in HY D) 2,
and
length, (H*(T),) < lengthy, (H'(T),/Z{f,T)y)
for any prime ideal p of A of height one.
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Proof. — The first part is proved in the same way as in the non-CM case in 13.14 by
12.4 (1), 12.6, 14.7, 15.20.

Woe prove the second part (the property about length). If p is an odd prime number
which does not divide the order of Gal(k(f)/K} and which is unramified in K, then
p does not divide the order of the torsion part of Gpes 88 Is easily seen. Hence by
Prop.15.17 and lemma 14.7, we are reduced to

Lemma 15.22. — Let v be a non-zero element of Vi{(1h) and let + be an element of
Vi(f) such that (v)t # 0,(v)" # 0. Then for almost ail finite places A of L,
't =yt and ' = vy in VI () = Vi, (f) for some u,u € 0}.

Proof. — Fix an I-basis w of S(v) = S(f) @r L. For almost all finite places A of I,
the O, lattices

T = DT + Oy and T4 = Ox-(vYT+0x- ()7

of V{7 (%) = Vi,(f) are Gal{Q/Q)-stable. For almost all A, Ty = T(Dx} and T} =
T(D}) for strongly divisible lattices Dy and Dy of Derys(VEL (%)) = Derys(Vi, {F))
such that w is an Ox-basis of D} = D~ and also is an O, -basis of (D5)' = (Dy)F L.
For almost all A, T} = ay - T for some ax € L} (14.7) and this mmplies D, = axDx
and hence (D})! = ay - D}. For almost all A, since w is an Ox-basis of Dj and also
an (Oy-basis of (Di\)l, we have a, € OF and hence T4 = Tx. This proves LemmDa
15.22. .

15.23. From 15.22, we can deduce the following result by the argument in §14:
LetreZ, 1< r <k/2. In the case r = k/2, assume L{f k/2) # 0. Then for almost
all places A of I and for all Gal(Q/Q)-stable Ox-lattices T of Vi, {F)(r), the number
i in Prop. 14.18 (2) satisfies

7=
By this, the proof of Thm, 14.2 goes in the same way as in the non-CM-case.

CHAPTER IV

IWASAWA THEORY FOR MODULAR FORMS
{WITH p-ADIC ZETA FUNCTIONS)

Tn this chapter, we study the Iwasawa theory concerning p-adic zeta functions of
modular forms, and p-adic Birch and Swinnerton-Dyer conjectures for modular forms.
As in Chap.III, we fix k » 2,N > 1, and & normalized newform

f=3"ang" € Su{Xa(M)) & T.

nzl )
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We also fix 2 prime number p and a place A of F = Q(an ; n 2 1) lying over p.

We denote by @ the algebraic closure of ¢ in C. We fix an algebraie closure 7y of
F) and an embedding § — 7y over .

16. The p-adic zeta function

In this section, we review the theory of p-adic zeta function of f, and then show
{Thm. 16.6) that the p-adic zeta function of f is the image of the p-adic zeta element
of f* = anlﬁnqﬂ‘ under a homomorphism of Perrin-Riou. This in fact provides a
new construction of the p-adic zeta function of f.

16.1. We assume that there exists o € (F5)* such that
L —aull — apu +e(p)pt1u? in Ffuf
and
ordp{er) < k-1

where ord, is the additive valuation of F normalized by ord,(p) = 1. The p-adic
zeta function of f is defined after we fix such a.

"I'he p-adic zeta function of f corresponding to o lives in a certain ring a1 with
L = Fy() which contains Or[[Gs]] as 2 subring. We introduce the ring 42, 1.

Let G, = Gal{Q({m)/Q), Goo = lim G, and let Goo = A x G be the decompo-
sition in 12.1. Let u be a topelogical generator of L., Then, for a finite extension L
of Qp, OL[[Ge]] is identified with the ring O [A][[u — 1]] of formal power series cver

the group ring O[A] in one variable u - 1.
For h = 1, let

L= {Z e 0 (u—1)" € L{A][[u— 1]];111:'5‘1;O [Cnolp - n " =0foraloe A}
nzt
TEA

where | [, denotes the multiplicative valuation of I normalized by |pl, = %. Then

OLliGe]|C b C M CH -
Define
ffo@,L - U%L,L-
A
Then #%.. 1, Is a ring since 25 -5 ;, C #y, 1 forany 1,7 = 1. We defined A, 1, and

F2e,r by fixing u, but they are in fact independent of the choice of 1 in the follewing
sense.

Let

(16.1.1) X(Coo) = Homgent (Goo, L)
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For ¥ € X(Gy), we have a ring homomorphism

Hror — I
f— p(x)
Z Cno o {u—1)" Z o - xlo) - (x(uy — 1)
nz0 nz20
gEA aggh

The homomorphism H#, 7 — Map{X{Gu), L); 4 — (x = p(x)) is injective, and
.1, is identified with a subring of Map(X (o), L). This subring is indepenilent
of the choice of u, and for b 2 1, %, 1 regarded as a subset of Map(X(G), L) is
independent of the choice of w.

Theorem 16.2 (Amice-Vélu [AV], Vishik [(Vi]). — Fiz o £ (—F_A)>< as above. Fiz also a
non-zero element w of S(f*), and a non-zero element v € Ve (f*) such that v+ # 0,
v~ #0. Define 14, Q. € C* by
per(w) = eyt + 0oy,

Then thers ezist a unigue clement

Lpfadic,a,u,'y (J") S JRﬁc—l,Fx(a)
(which we denote Ly agic ol f) for simplicity) having the following properties (1) (1)
for any integer v such that 1 <r <k —1.

(1) Letnz 1, let x : Gn — ﬁ; be o homomorphism which does not factor through
G, and regard k™ x a3 an element of X(Go) (16.1.1). Then
1

Lp_adjc’a(f)(,’ﬂrxﬁl) ={r—1p"a™- G(X,Cpn.)"l - {2m’)k”*1 . N L (fix )

(both sides belong to Q, and the equality holds in Q) where £ = (=17 Yy (1), x is
regarded here as a character of (Z/p™)* via the cyclotomic character Gy ~ (Z/p™)%,
and G{x, (p~) means the Gauss sunt 3, X(b)gg,, where b ranges over oll elements of
(Zjp™)".
(i) :
T YR T 1 r—1_,—1 k—r—1,.=1y

Lp-sdic,a(F)(87) = (r—1)!- (2m4)" I‘E‘(l_P o~ )(1—=(p)p o )-L{f7)
where £ = (—1)*"L,

Remark 16.3

(1) Let A > 1 and let u,p’ € 55 1. Let r(1),...,r(h) be distinct h integers, and
assume
(") = ' (57
for any 4 = 1,.. .,k and for almost all elements x € X{Go) of finite orders. Then
u = u'. Hence the property (i} in Thm. 16.2 characterizes the element Ly paic o (f) of
jiﬂk—l:l’,\(a)‘

(2} For a,b € F*, we have Lpadic.osauby(F) = 07 0 Lpadicaw ()
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The following theorems follows from the work of Perrin-Riou [Pe2].

Theorem 16.4 (Perrin-Riou). — Let L be o finite extension of @, and let V' be o finite
dimensional L-vector space endowed with o continuous L-lineer action of Gal(Qp/Q,).
Assume V is o de Rham representation of Gal(Q,/Q,), and assume

(16.41) Derys(V*(1)) CDar(V" (1)} in Dar(V"(1)
where V* = Homp(V, L} endowed with the dual action of Gal(L/L) Let § €
Deeys(V*(1)). Then there exists o unigue horomorphism
L H (V) — oz
hoving the following properties (1) () for any iniegerr 2 1.

() Letn 2 1, and let x : G — T bea homomorphism which does not factor
through Gn_1. Then for any ¢ € H (V), we have

Ly x ) = (r =11 Gl Gm) ™ D xloNolem™(@_rn)), (0770) T ().

geG,
Here x_,p, denotes the image of © wnder the composite

L, (V) =5 HE (V(—r)) 22 B (@, (), V(1)

where the first arrow is the product with ({{:)®~ )51 and the second arrow is
the canonical projection (s0 exp™(Torn) is an element of Q(pn) @ Dan(V(—r)) =
Qp (G} ® Danr{V)), {, } is the canonical pairing

(Q(CpJ) [y DdR(VD X Dcrys(v*(]-)) — z
induced by Dar(V) X Doy (V*(1)) — L, and ¢ is the Frobenius.
(i) Assume n=(1—p ")y withn' € Derys{Vi, (F)). Then for any z € HL (V),
Lo(2)(87) = (r — 1)1 {exp*(zr,0), (1 —p" ™ 1)),
This map Ly is A-linear, and the map n — £, is L-linear. Furthermore, if r = 1 and

if 5 belongs to an L-subspace of Do (VF(1)) on which the slope of the Frobenius is
< h, then Image(2,) C 5%, 1.

Remark 16.5

(1} In the paper [Pe2], Perrin-Riou in fact defined a cancnical homomorphism

Hoar — Hoor ®a (Li_r_nHl(Z[Cpn, 1/p},T*(1)))/(some small thing),

associated to 7 € Deye(V*(1)). The homomorphism in 16.4 is cbtained from this
homomeorphism by taking Home,_ , (, 5 1)

(2) In the paper [Pe2], the assumption V is crystalline appears to have a map in
the above (1} for n € Dy (V*(1)). Kurthara, Tsuji and I checked that this assumption
is not necessary [KKT]. See also [CP], [Pe5].
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We apply 16.4 by taking Vi, (f*)(k) as V in 16.4. Since (VFLQf*)(k))*(l) =
Vi, (£*)*(1 — k) is isomorphic to Vi, (f) as a representation of Gal(Q/Q) (14.10.1),
the condition (16.4.1) is satisfied.

Theorem 16.6. — Let o, 0,y be as in 16.2, and let
2P (f7) (k) € Hipo (Ve (F) (k)

be the image of the p-adic zeta element
2P (f*) € HY (Ve (7))

(12.5 (1)) under the product with ({pm n; Then:
(1) There exists an element 1 of Fa(a) ®F, Derys(Vr, (f*)*(1 — k) such that

o) =cm and () =1.
{2) Forn as in (1), we hove
vaadic,a,w,w(f) = Sn(zf(yp) (f*)(k))

Here w is regarded as an element of Dar(Ve, (f*)) vie ihe embedding S(f*) C
Dar{Vr, (£*)).

Proof. — We prove (1). Since Vi, (f*)*(1 — k) = Vi, (f} and
1 = agu +e(p)p"u® = detp, (1 — @u on Derys(Ve ()

by [Sal], there exists a non-zero element n of Fi(a) &g, Derys(Ven (F)5(1 — &)
such that w(n) = an. It is sufficient to prove {w,n) # 0. Since the annihilator of
S(F") in Fy(a) ©r, Daa(Vie, (F*)* (1~ £)) is Fa(a) @, DER (Ve (570 (1 — k), &

is sufficient to prove that in Fiy(a) @r, Dan(Ve, (F7)*(1 — k), n does not beiong
to Fi(a) @, DA (VR (F*)"(1 — k)). Hence it is sufficient to show that a non-
gero element 7 in Fi(a) @p, Derys(Vay, (f7)*(1 — k) such that o(n) = an does not
belong to Fi(a) @x, Dig’ (Ve, (f*)*(1 — k)). Consider the Fx(a)-subspace o) .
of Fiy(0) @5, Derys (Vi (F5)"(1 — E)). This subspace is stable under the action of the
Frobenius . The Newton polygon of this subspace has slope ordy{a) < k—1, and if
n e Fya) ®r, DA (Ve (F*){1 — k)), the Hodge polygon of this subspace has slope
k —1 [Fo3, §4. 4] By [Fo3, §4.4], this contradicts the result of Tsuji and Faltings
that Vi, {f) is potentially semi-stable (as explained in 11.4).

Next we prove (2). Let r € Z, 1 < v € k— l.and let n and x be as in 16.4 (i).
‘Write

' exp* (2% (f*) k) —rn) = Corntw Withcrn € Q¢m) @ F.
Then by 16.4

LoD (fUEN(RTX ) = (r = ™" Gl Gen) ™ Y xlo)o{eann)-

acGy
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Let & = (=1)*"~1y(-1). By the characterizing property of the p-adic zeta element
2P (f*) in 12.5, the image of 3 o x(0)o{corn) - w under

QGr) @ S(f) — Cop Ve(f") — Cop Vrlf*)*"
is (270)" " L (F,x,7) - vE. This shows

( Z X(U)U(C—r,n)) L = (2m)k”“1L{p}(f,x,r).

cEG,

This proves ’eﬂ (Z.E;P)(f*)(k)) = Lp-a.dic,a,u,q:(f) by 16.3 (1) M

17. The main conjecture, 1T

In §17 and §18, we consider the relation between the p-adic zeta function of f
and the Selmer groups associated to f. In this section, we consider the analogue of
Iwasawa main conjecture in the case f is of good ordinary reduction.

The following is known:

Proposition 17.1. — The following three conditions {i)-(#) are equivelent.

(i) p does not divide N and a, € OF.

(ii) p does not divide N and there ewists an element o of OF such that 1 — au
divides the polymomial 1 — ayu + e(p)p®~ 1wl _

{fii) Vi, (f) is crystalline as a representation of Gal{Q,/Qy), and there ezists a

one dimensional Fx-subspace Vi, (f) of Vi, (F) which is stable under ihe action, of
Gal(Qp/Qy) and is unramified as a representation of Gal(Qp/ Q).
Furthermore, if these equivalent conditions are satisfied, the element o in (i)
is unique, and the subspace Vi (f) in. (4i) is unique;, and if we put Vi i) =
Ve (F)/Ve (F), VE ()& ~ 1) is unramified as o representation of Gal{@, /Q,).

We give the proof of 17.1 in 17.7.

We say that [ has good ordinary reduction at A if the equivalent conditions in 17.1
are satisfied. .

If f has good ordinary reduction at ), f* also has good ordinary reduction at A.

This follows from Vi, (f*} ~ Homp, (Vr, (f), £5)(1 ~ &) by using the above condition

ii1).

Proposition 17.2. — Assume f has good ordinary reduction af \. Let Ve (F) and

Ve (flbeasin 171, let T be a Gal(Q/Q)-stable O -lattice in Ve (F), and let
0—T T —T"—qQ

be the exact sequence defined by TV = T N Ve LT =T/T" < Vi (f). Then for
1£r<k—1, the subgroup

tlim Sel(Q(pn ), T(r)){~)

T
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of im HYZ[Cpn, 1/p], T ® Q/Z) coincides with the kernel of
i HHZ (G, 1/p], T © Q/Z) — lim B (Qp((pn ), T" @ Q/Z)

and hence is independent of v.

The proof of 17.2 is given in 17.1C.

17.3. Assume £ has good ordinary reduction at A. Fora CGal{Q/Q)-stable Oy-lattice
T of Vi, (f), let

Seloo(T) = l_iz_}nSel(@(Cpn),T(r)] {(—7) (l<r<k—1)

which is independent of r, and let
X(T) = Homo, (Seles (1), F7 /O

We regard ¥(T) as a module over A = 03[[Go]] in the natural way. It is easily seen
that X(7") is a finitely generated A-module.
The aim of this section is to prove the following Thm. 17.4.

Theorem 17.4. — Assume [ has good ordinary reduction at A. Let T be a CGal(Q/Q)-
stable Oy -lattice of ¥V, (f).

{1} X(T) is a torsion A-module. ,

(2) Let @ be as in 17.1, let w be a non-zero element of S(f*), and let v be an
element of Ve (F*) such that v+ # 0 and v~ # 0. Then, Lyadic,aw,+(f) € A®Q, and
we have

lengt’hj\p (XTI < Ordp{Lpadic,cz,u«y(fD
for any prime ideal p in A of height one which does not contain p.

(3) Let a,w,y be as in (2), and assume that both w and v are good for some
Gal(Q/Q)-stable Oy -laitice of Vr, (f) in the sense of 17.5 below. Assume further
p # 2 and that the condition 12.5.2 in 12.5 ({) is satisfied. Then Ly adic,amw(f)
belongs to A and

length, (X(T)p) < ord, ( Lpadic.ew S )

for any prime ideal p of A of height one.

17.5. Assume [ has good ordinary reduction at A. Then as we will see in 17.8, the
composite map

(17.5.1) S(f) @ Fy == Dar(Vr () — Dar(Vz, (f))

is an isomorphism. (Here V{ (f) is as in 17.1.) N

Let T be a Gal(Q/Q}-stable Ox-lattice of Vi, (). Then HY(Qy, Zy* @2, 7" (k jfl)-)
is an O,-lattice of the one dimensional Fl-vector space DdR(Vji-:; (), where T- i3
the image of T in Vi (f) and z;r denotes the p-adic completion of the valuation

ring of ("
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We say an element w of S(f) is good for T' if the image of w in Dyx (VE {f)) under
the map {17.5.1) is an O,-basis of H*(Qy, 2;’ ®z, T"(k —1)). Note that a good w for
T exists. In the case f of weight 2 and T = (TpE)(-1) for an elliptic curve J over Q)

w is good for T if and only if w is a Z,-basis of coLie{E) & Z, where E is the Néron
model of E.

Recall 14.18 thai we say an element v of Vi, (f) is good for T if ~47T is an O-basis
of T and v~ is an Oy-basis of T

The following is an oid conjecture due to Mazur and Greenberg.

Conjecture 17.6 (main conjecture). — Assume f has good ordinary reduction at A, and
let T, X{T), a,w,7 be us in Thm. 17.4 (2). Then

1engthA ( ( )p) = Ol'dp (Lpua/dic.a u,”)‘(f))

for any prime ideal p of height one of A which does not containp. If furthermorep # 2
and if w and v are good in the sense of 17.5 for some Gal(Q/Q)-stable Ox-lattice of
Vi, (f*) which is isomorphic o T*(1 — k) as a representation of Gal(Q/Q) over Oy,
then

length, (X(T)s) = ordp(Lp-adiconw,y(f))

for any prime ideal p of height one.

See Greenberg [Gr1], [Gr2], Schneider [Scp] for more general aspects for motives.

As we will see in 17.13, the main conjecture 12.10 implies the main conjecture
17.6. The arguments to do this are similar to the arguments in deducing the classical
Twasawa main conjecture for the p-adic Riemann zeta function from the Iwasawa main
conjecture of the form 12.9, and are well known to experts.

17.7. We prove 17.1.

Assume (i). We prove (ii). Write 1 —a,u+<(p)p® 1u? in the form (1—au){1 - fu)
with o, 8 € FA If o does not belong to Fi, we have ord pla) = ordy () because o
and j are conjugate over Fy. Since af = elp)p® L, ordp(a) = ordy(F} = %= >0
and this contradicts ¢ + 8 = a, € OF. Hence @ € Fi. This shows a, g e OA By
@+ A€ 0F, one of a, F belongs to OF. Hence (i) implies (ii).

Assume (ii). We prove (iif). Since p does not divide N, Vg, (f) is a crystalline
representation of Gal(Q,;/Qz). The space Derys(Vr, (f)) has a Frobenius and a
fltration (D%a (Vi (f)))iez via the identification Derys(Vi, () = Dar(Vie, (). We
have

Dar(Ve {f))} for i< 0,
Dir(Va (f) =< 8(flerF forl<i<k-1,
0 for i = k.

Let o be as in condition (ii). Since

detF)\ (1 — Pu; Dcrys (VFA (JL))) =1- aple + S(p)pk71“2
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[Sall, Derye (Ve (F))a = {2 € Daye(VR ()5 () = ax} is a one dimensional Fj-
vector space.

Let I be a one dimensional Fy-vector space which is endowed with an unramified
action of Gal{Q,/Qp) such that the arithmetic Frobenius acts by o~ Then the
Frobenius on Derys(U} coincides with the multiplication by Din(U) = Dgr(U) for
i <0,a0d Dig(U) = 0 fori 2 1. Let A : Dorya(U) — Derys(Vi, (f)) be an injective Fi-
linear map whose image i8 Derys(Vir, (f))a- Then h preserves the Frobenius operators
and the filtrations, and hence comes from an F)[Gal(Q,/Qp)}-homomorphism U —
Vi, (f) [Fol]. Let VZL (f) be the image of this homomorphism. Then Vi (f} is
unramified.

It is easy to see that (i) implies (i}.

We prove that (iii} implies (i}. Since Vp, (f) is crystaliine as a representation of
Gal(@,/Qy), p does not divide N by [Ca] and [Sal]. Since

1—apu -+ e(p)u® = det(1 — u; Doys(Vm (f)))  (14.10.4)

and since the slope of the unramified representation V. (f) is zero, we have (ii).

Thus we have proved that the conditions (i)-{iii) are equivalent. Assume now that
these equivalent conditions are satisfied. Then o in (ii} is unique as is easily seen. Let
Vi, (f) = Vi {f)/ Vg, (F)- Since

Vi (F) @ Vi (F)0k — 1) = (et (Vi (D)} — 1)

is unramified (14.10.2), we have that V, (f)(k — 1) is unramified. Since Vi, (f) is not
isomorphic to VZ (f), we see that Vi, (f) is unique.
This completes the proof of Prop.17.1. d

17.8. We prove the bijectivity of the composite map (17.5.1). For ¢ € Z, we have an
exact sequence _
0 — Din(Vi, (£)) — Dim(Vi, (£)) — Din(VA () — 0
Forisuchthat 1 €1k —1,
(Ve (f)) =0, Dir(Ve, (F1) = Sr(f) ®F Fy and Din(VE, (F)) = (Ve ()

Hence Sp(f) @p Fy — Dig(VZ (F)) is an isomorphism.

Lemma 17.9. — Assume f has good ordinary reduction at A, let T, 1", T" be as
in 17.2, and let r be an inieger such that 1 € r < k— 1. Then the image of
lim B (Qp( G ), T(r)) in HL (T(r)) coincides with the image of H; (T'(r)).
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Proof. — By Prop. 14.12, we have
H(Qp, V) = B (Qp V) =0 for V = Vi (£/)(r), Vi, (£)(m), ViR ()
dimg, HY(Qy, Vi, (f)(r) = 2,
dimp, H;(Qp, Ve (1)) = 1,
dimp, HH @y, V) =1 for V =V (£)(r), VA (){r),
H3(Qp, Vi, ()} = HHQy, Vi, (£ (7)),
H; (@, VA, (N)(r)) = 0.

We have also H™{Qp{{pn ), Va, (F1(r)) = &H™(Qp, V1., (f ® x:)(r)) and similar facts
for Vi (£){r), Vi, (f){r), where L; are finite extensions of Q, satisfying Fy[{Z/p")*] =
TL; L; and where x; : {Z/p™)* — L are induced homomaorphisms. These show
that H3{Qp (G ), Vi, (F)(r)) coincides with the image of HY(Qp((pn ), VE, (F)(r)) in
HYQp(Con )y Vi, (F) (7). Hence H} (Qp(¢pn ), T{r)) contains the image of the injection
B (G ), T/ (1) — FH (@G ), T(A(r)), and

3 (Qp{Gpm ), T(r)) H @ (G ), T' (1))

ig a finite group and is embedded into the torsion part of H*(Q,({pn ), T7(r)}. Since
the torsion part of B Qs ({en ), T (7)) is the image of HY(Qp (o), T (r} @ Q/Z), it s
sufficient to prove that lim HO(Q, (¢ ), T¥(r) @ Q/Z) is zero. But this follows from
the finiteness of H®(Q, (e}, T"(r) ® Q/Z) (13.13}. a

17.10. We prove Prop.17.2. Let 1 < ¢ < k — 1. For each prime number £, let

A} = HN Qe @ Q(Gm), T(r) © Q/Z),
B} = Image (H}(Qe © QG 1, T(r) @ Q) — 47).

For sach prime number £ +£ p, let,
CF = H'(Ze © Z[Gp], T(r) @ Q/Z) C A7

Then for any prime number £ # p, B} coincides with the biggest divisible subgroup
of C}. We have

Sel( @Gy}, T(r3) = Ker (B (QGn). T(7) ©Q/2)  43/57 @ (@ A7)
S(Q(Gr ), T(£)(r) = Ker (BX(Q(Gm), T(r) ® Q) — A7/B} o ( @ ar/cn)
B Rion 13, T) @ Q/2) = Ker (B (QUGr). 1) ©0/2) - @ AF/CF ).

We have lim CF = 0 since
—1

B (Ze @ ZGpn], ) = H' {Fe @ Z{Ger], )
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and the p—-cohomological dimension of J,, Fo({n) is zero.
lim By =0, and
b,

limg Sel(Q (G ), T(r))

ke

Hence we have also

Bim S(Q(Gn ), (7))

= ﬁ_l’)nKEI‘ (HI(ZKP’H lfp],T(T) ®Q/Z) - AE/B;)

(17.10.1)

Hence it is sufficlent to prove that By is equal to the kernel of
lim A7 — L H (Q,(4n), T (r) © Q/Z).
n k3

But this follows from Lermama 17.9 by duality [BK2, Prop. 3.8].
The following Prop.17.11 and Lemma 17.12 are preliminaries for the proof of
Thm. 17.4.

Proposition 17.11. — Assume f has good ordinary reduction at A, let T be o
Gal(Q/Q)-stable Ox-lattice of Vi, (f*), let T =T NVy (f), T =T/T" C VE (F).
Let n be o basis of the invertible Oy -module

H*(Qy, 2y @z, Homo, (T, 03)(1 = k)) © Derya( Vi, ()7 (1 — B)).
Then the homomorphism
Ly Hy (T(R)) — Hoor, (164)
induces an mjection
H, (T(%))/Hiy (T (k) — A,

whose cokernel is o finite group.

Proof. — Since n € Deyy (VE (f*)*(1—k)), the map £, factors through H} {T{&)) —
Hi (T"(k}). Since Hf (T"(k}) is a finite group, the cokernel of the injective homo-

loc
morphism
HL (T(k))/HL (T (k) — T,

oo (T (K3)
is a finite group. It remains to prove that £, induces an injective homomorphism
. _(T"(k)) — A with finite cokernel. Hence we are reduced to the following lemma

17.12 which we apply by taking T"(k — 1) as T in Lemma 17.12. |

Lemma 17.12. — Let L be o finite extension of Qp, and lei T be an invertible Op -
module endowed with a continuous unramified Or -linear action of Gal{),/Qy) such
that HP(Qu, 1) = 0. Let 13 be an Oy -basis of the invertible Or-module

HY(Qp, 25 @z, T").
(T(1)) — . induces an injection HL (T(1)} — Op[[Gu]] whose

ioc

Then £ : H?

loc
eokernel is o finite group.
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Proof. — In this case, the homomorphism £y is expressed by using the theory of
Coleman power series.
Let F, be the residue field of Q7 which is an algebraic closure of F,. Since T is

unramified, T is regarded as Gal(F,/Fp)-module. The map £, is written as
BL,.(7(1)) % B (B, i B (@ (G, Zo(1)) 02, T)
T

H(Q,, 2 8z, T) 0, Orl[Gool] —— OLl[Gocll
where a is the evident map and b is defined as follows. Let

@ (Gr)*), @ =bm(ZF(Ge]*)

= lim
k3 o
where () denotes the p-adic completion lim_(}/p™( ). Then
P:"EEHI(@?(CM),Z?U)):
P/IQ = 7y by the additive valuation.

By-Coleman-{ER1;-ER2}-we-have-an-exaet- sequence....g.E...Gal(Ep./.Fp):mo.dul.es
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we have HO(]B',,, P&z, T) = HY(F,, Q ®z,T). The map b is defined to be the composite
HO(F,, P @g, T) = HO(Fy, Q @z, T) —— HO(Fy, 2 [[Gooll @2, T)
= H°(Qp, " ®2, T) ®0,, OrlGo]]-

It remains to prove that the map a is bijective and that the map b is injective and
the cokernel of b is finite. The bijectivity of ¢ follows from H' (Qur(Cpn) Zp(1)) =
HHQp" ((pn ), Zp(1)) and from the spectral sequence

By = B (Fp B (@ (Gr), )) = B = H(Qp(Gr ) )-

Next by the exact sequence {17.12.1), Ker(d) = H(F,,T) and Coker(b)
HY(F,,T). Hence the injectivity of b follows from the vanishing of HY(F,,, T
H%(Q,,T), and the finiteness of the cokernel of b i3 reduced to the finiteness of
H(F,,T) = Coker(Frob,—1; T),which follows Ker(Frob, —1; 7'} = H'(F,, T) = 6. [l

My

i

17.13. We prove Thm. 17.4.

Fizst the property Lp-adic.awy(f) € A® Q (zesp. Lpadic,aw(f) € A} in 174 (2)
(resp. 17.4 (3)) is known but follows also from 17.11 and 16.6 (resp. 17.11, 12.5 (4]
and 16.6). ’

Let T be a Gal(Q/Q)-stable Ox-lattice of Vi, (f*). Take any integer r such that

(17.12.1) 0 — Zp — Q@ = Z¥([Gecll — 0,

where the map Zp — @ sends 1 € Zg to (—(pnlnp1 € Q and cis defined as follows.
Let ¢ be an indeterminate, and let :

o (vesp. §) + Z°[{t — 1]] — Zy*[lt ~ 1]
be the unique continuous ring homomorphism such that (t) = t* (#(t) = £) and such
that the restriction of ¢ (resp ¢) to Z”r is the Frobenius automorphism of Z‘” Since
(700 acts on Z"“"[[ﬁ —1]] as Z“-hnear continuous ring automorphiszms in the way that
o & G sends ¢ to 57 we can regard Zy[[t — 1]] as a Z2[[Gosll-module. For each
u = (Un)n € lim Z‘“[Cpnlx C ©, by the theory of Coleman, there exists & unique

element = u(t) of Z’“[[t 1]]% (the Coleman power series associated to u) such that
~n(F){((pm) for all n = 1. Furthermore, there exists a unique element e, of
Z‘p“[[GoQH such that

> tog(@ (@ ™) = - tin BT 11

Here i, - t is defined by the ahove i;r[[Gw]]-module structure of ﬁg"[{t —1]]. The
map ¢ is defined by ¢{u) = py. Now the definition of b is as follows. Since

HO(F,, P/Q ®z, T) ~ H(Q,,T) = 0,
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1£r<k-—1 By taking lim_ of the sequence {14.9.3) for K = Q(n) and for
T(r) (we use T(r) as T'in (14 9. 3)) and by using (17.10.1), we obtain a sequence of
A-modules

(17.13.1) 0 — H'(T(k))/ (i HF(Z[Cpm, 1/p], Tr)) (k = 7))

— H%DC(T(’S))/(EEH} (Qp (G ), T(r) )k — 7))

e E(T*(1 = &) — BT (k) — H(T(k))

(T* = Homg, (T, 03)) which is exact if p # 2, and is exact upto X2 in the case p = 2.
We show first

{17.13.2) lim H§(Z[Gom, /7], T(r)) = 0.

For this, since HY(T(k)) has no A-torsion and is of A-rank 1 (12.4), it is sufficient
to show that the image of H'(T(k)) in Hi, (T(k))/(lim H3(Qp(Cn), T(r))(k — )} 18
of A-rank 1. This fact is shown by observing that the image of Z(f){k) (12.5 (2)) is

already of A-rank 1.
Next by 17.9, we have

(1713.3)  HL(T)/mHS (QulCer), T(r))k — 7)) = Hio(T(R))/Hioo(17(k))

where T' = T 1V}, (#*}. Furthermore by the latter half of Thm. 12.5 (3),
(17.13.4) HE_(T(k)) i3 o finite group.
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Let p be a prime ideal of A of height one. In the case p contains p, we assume
p # 2 and that the condition (12.5.2) in 12.5 (4) is satisfied. By (17.13.2)-{17.13.4),
we obtain from (17.13.1) an exact sequence

0 Hl (T(k))§3 - H%GC(T(k))p/H%DC(T’(k))p
— X(T* (L= K))p —— BT (k))p — 0
Let w be an element of 5(f) which is good for T, and let ¥ be an element of Ve (f*)
which is good for T, in the sense of 17.5. By 17.11 and by 12.5, 16.6, we have an
isomorphism Hi (T{k})y /HE (T'(k)), =~ A, which sends the image of Z(f, T)(k)y
(12.5 (4)) onte Ay - Lp.adic,aw,y(f). Hence we obtain an exact sequence

0 — HYT(E))p/Z(£, T)k)p — Ap/(8p - Lp-adic,ow,r(f)
— B(T*(1 = k) — HH(T{k))y — 0

Hence X(T™(1 — k))p is a torsion Ap-module, and

lengthy, E(T{L-k))p) - length, {Ap/(Lp-acic,ew )
= lengthy (H*(T'(k))} — lengthy, (LN (T(k))p /Z(f, TH{K)p)-

Hence Thm. 17.4 (resp. Conj.17.6) becomes a consequence of Thm. 12.5 (resp.
Conj. 12.10).

18. p-adic Birch Swinnerton-Dyer conjectures

In this section, we assume & is even.

Let T be a Gal{@/Q)-stable Oy-lattice of Ve, (£)(k/2). We consider the relation
between the corank of the Selmer group Sel(T") and the order of the p-adic zeta
function of f at s = k/2.

18.1. For the order of the complex zeta function L(f, s), the “modular form version”
of the Birch Swinnerton-Dyer conjecture says

coranke, (8el(T)) = ord,— s (L{f, 5)).

A p-adic analogue of this is formulated in [MTT}.

Assume that there is o € Fy such that 1 — au divides 1 — apu + e(p)p*~*2? and
such that ord,(a) < k — 1. Let w be a non-zero element of S(f*), and let v be an
element of Vp(f*) such that 7 # 0 and v~ # 0. Write Lp-adic,aw,y(f) simply as
Lp-adic,o{f) (the choices of w and + are not important in the following). We denote
oo, 7y (o) SIMPly by H5.

For an element p of #7, and for # € Z, we define the order of 4 at s = r, denoted
by ord;—.{), as follows. Let p be the kernel of the ring homomorphism Ho, —
Fala);u — (k™) induced by the group homomorphism &7 : Ga — Z,* C Fy.
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Then 25 we will see in 13.6, the local ring 52, is a discrete valuation ring. We define
ordswr(u) = length (Moo /100 p)-

Conjecture 18.2 ((MTTD). — Ifa # p® /2 we have
coranko, (Sel(T')) = ord,—y/a(Lp-agic,a (f})-
If o= p*=2/2 ye have
coranko, (Sel(T)) = ordser/2(Lp-adica{f)) — L.
Remark 18.3. — If o = p*=2/2 then Ly agic o(f, k/2) = 0 (16.2 (ii)) and hence
orde—gs2 (Lpadic,a(f)) 2 1.

If oo = pt¥=2)/2 then p divides N. In the case & = 2 and f corzesponds to an elliptic
curve B over (J, o = 1 if and only if £ ® Q) is a Tate curve.

Theorem 18.4. — Let T be Gal(Q/Q)-siable Oy -lattice of Vi, (F)(k/2). Then we have
< in place of = in Cong. 18.2. That is,

Ords=k/‘2 {Lp-adic.a([)) Yo p(k—z)ﬂ)
ordsmpsa(Lpadicaf)) —1 fa= ple—2/2,

In particuler, if k =2, F = Q, and f corresponds to an elliptic curve E over @, we
have

coranke, (Sel(T)) < {

rank(F(Q)) € ordse1 (Lp-adic,o(f))
if B iz not o Tate curve, and

rank{ E{Q)) € ordm(ip-adic,a(f)) -1

if B is a Tate curve.

The arguments in the proof below for the case o # p*~2/2 {5 given in Perrin-Riou
[Pel], [Pe3]. The proof for the case o = p*~2¥/? will be given in [KKT], and we
give below the outline of it.

18.5. We prove that for p as in 18.1, the local ring 5%, , is 2 discrete valuation ring.
This is reduced to the case r = 0, and then to the following fact. Let L be a complete
discrete valuation field of mixed characteristic {0,p), and let

A={¥ SaanX"; |anlp -n™" — 0 for some & = 1} C L[[X]].

Here | | denotes the multiplicative valuation of L normalized by [pl, = p~'. Let p be
the prime ideal {2@0 an X" € A; ag = 0} of A. Then the local ring A, is a discrete
valuation ring. We prove this. If y = Zn;o a, X" € A pn# 0, and m = min{n =
0; an # 0}, then pX ™™ = 3 = arymX™ belongs to A. (In fact, |aplp -n™" — 0
for some A > 1, and hence iy —eo |Gntrmlp - 17" = My oo an]p - (m~ m) ™" = 0.)
Hence any non-zero element of A can be written in the form X™u for some m 2 0
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and for some g € A~ p. This shows that all ideals of A, are given by (X"} (n 2 0)
and {0}. Hence A, is a discrete valuation ring.

Proposition 18.6. — Let T be a Gal((/Q)-stable Ox-lattice of Vi, (f)(k/2), and let j
be the canonical mop
HYZ[1/p], T*(1)) — HH(Qyp, T (1))/H} (Qp, T (1))-
Then
dimp, HA{Z[1/p}, Vir, (F7)(k/2)) FioQ#F0,

coraiko, (8e(T)) = {dﬁn& BR8], Vi (F)/2) 1 #3090 =0

This follows from the exact sequence in the category {abelian groups}/{finite groups}

7Y E[1/p), T (1)) o B (@, T* (1)) /HL @y, T*(1))
e Sel(T) — B[ /5], TH1)) —

where ( )Y = Homo, ( , K5/Oy). (see (14.9.4). Here we used the fact H*(Qp, 7%(1)) is
finite {14.12), and the fact that T™*{1) is isornorphic to a Gal(Q/Q)-stable Ox-lattice

of Ve, (f*)(k/2) as a representation of Gal(Q/Q) over Ox.

Lemma 18.7. — Let p be the ring homomorphism A — Oy which sends G to 1.
Then we have

dimp, (H2(Z[1/p], Vi, (F*)(E/2))) < lengthy, (H* (VE, (F*))(k/2)p/Z () (k/2)5).
Proof. — By
HE (Vi (£7))(k/2)p /pHA(Ve, (F*))(k/2)a = B2 (Z{L/p], ViR () (B/2)),
we have
dim g, (H*(Z[1/p], Ve, (F)k/2)))
= length,,  (F2(Ve, (£°)(k/2)p /PH*(V, (£7))(k/2)5)
- < lengthy, (H* (Ve (F))(k/2)p)
< lengthy (H' (Ve (F*))0k/2)p /2 () ([ 2)0),

where the last < follows from Thm. 12.5 (3). O

18.8. Let b be as in Lemma 18.7. Then the kernel of the ring homomorphism
triv 1 e, — Fa{a)

which sends Go, to 1 coincides with ps3€,.
For v € Z, let T, 1 5 — e be the ring isomorphism induced by

Goo — g, or— o) o
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Let n be as in Thm. 16.6. Then the A-homomorphism
Lot B (Vie, (F1) (k) — Hoo
induces a A-homomorphism
Loz Hioe(Ve, (F)(6/2)) — Ao
T s Toga (2 @ (G ) S0P

Let I be the ideal of 2, pse, generated by the image of Z{f*)(k/2) under £, 1 /5.
Ther T coincides with the ideal generated by 79 Lp-adic,a(f)- Hence

(18.8.1) lengthyp ..., (Hoopsti /1) = ords—o{me/oLiadica(f))
= ordg—p/2 (Lp-adic,a(f))’

Lemma 18.9
(1) We have

lengthyy (B (Vi (F*))(k/ 235/ Z(F)(k/2)p) € ordsmio{Lp-agic,al F))-
(2} fjeQ=0,
lengthy (' (Ve (F))(6/2)p/Z(§*)(k/2)5) < otdemipo(Lpadic,alf)) — 1.
Proof. — (1) is clear from {18.8.1). Assume j @ Q = 0. Since the composite

S .
11,k 2 e, Lriv P (oz)

(18.9.) HY (Vi (F))(8/2)
coincides with (1 — p(=2/26-1)(1 — p*=21/2)~* {imes the composite
B (Vi (7)) (6/2) — BNELL/, Ve (1) L2
H (@, Vs (P (5/2) /B (@, Vi, (79)(/2) 22 5044 05 Fy T Fi(a)
(16.4 (i)}, the map (18.9.1) is the zero map. Hence the image of
Soess - (Vi (PN (8/2) — Hoooe,

is contained in p##.. Hence we have the € in

lengthAp (HI(VF}\ (f*))(k/z)p/z(f*) (k/z)p) < ]-engt’hﬁi"oc,p.%’m (pn%adoo,p.??w /I)
=lengthyy . (Hopse /1)1 U

18.10. Now the case o £ pt*~2)/2 of Thm. 18.4 follows from Lemma 18.6, 18.7, 18.9,
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18.11. Finally we give the outline of the proof of the case ¢ = p*~2/2 of Thm. 18 4.
In the case, by [KKT], the image of

Lpis2 t Blool VR (F(R/2)) ~— Hio e,
is contained in p.3&,, and the composite map
Lo Hipo(Va () (8/2)) — 0o pit, — 9o pitrn |9 Hoop st
factors through the canonical projection
Mo (Vi (F7)(5/2)) — HY(Qy, Vi () (6/2))/ B3 (@, Vi, (F7)(k/2))-
Hence in the case @ = p*=2/2 and j ® @ = 0, the image of
Lo szt HH Vi (F)k/2)) —— Hio por
is contained in p* 32, e, . These show that
lengthyy (' (Vie, (7)) (6/2)5 /Z (£} (k/2)p) < 0tdoia(Lp-acic,alf)) — 1
in the case o = p* /2 gnd j @ Q #0, and
lengthy, (H (Vie, (/%)) (R/2)p /2 (F73(k/2)p) < ordsnisa(Lpmadic,al f)) — 2

in the case ¢ = p*=2/2 and j ® @ = 6. This and Lemma 18.6, 18.7 prove the case
a = p¥ 22 of Thin. 18.4.

Table of special Notation

Zeta elements

odZy,n (2 zeta element in Ko of a modular curve Y{(M, N ... 2.2
zpr,n (8 zeta element in Ky @ Q of a modular curve Y{M, N)) ............ 2.2
cazu n (k") 2w (k. r,7) (zeta modular forms of weight & on X (M, N)) 4.2
c,dzg?N(k, r,7') (a p-adic zeta element on X (M, N)) ....................... 8.4
71, vm{€, §) {a zeta element in Ko{Vi{N)®QUmn)) @Q) oo ooeeiiieeie o, 5.1
ea?L, v mlk,r €., 21 N mik, 1, €,5) (zeta modular forms of weight k

O XN @ Q) oo 5.2
cidzgjj\,'m(k, r,r', £,8) (a p-adic zeta element of weight k on X1(N) @ Q({n)) 8.9
Zm(f,£,5) (a zeta clement M K ® Qofanewform f) ... 5.1

2m{fr ! 6,8), catm(f, 0 £, 8) (zeta modular forms of a new form f) .. 5.2

c’dz,,(,f) (f,r,7,£, 8} (a p-adic zeta element of a new form f) ........ S, 8.11
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Zeta functions
Zag (8] e 2.5
(ka8 o 4.5
3 T R R R R 3.9
(T T R R R EETREERERER 3.9

Lpacic oSy Lpadie,a(f} (the p-adic zeta function of a new form f} .... 162

Iwasawa algebra and a related ring

Modular curves

D2 121 TP AR 1.1
VUM, IN) oo e 2.1
VLV) = V(L YD oo 21,85
Y(M(A, N, YMNTAY) 2.8
X(N), X(M,N), X1(N),... smooth compactifications of Y (), Y{(M,N), Y1 {N),...
F* (the dusl modular Jorm) ... 6.5

Spaces associated to modular curves or to modular forms

Vo a (VM NV, Via (XM, ND) <o 45
My, (Mi(X(N)) etc.) (space of modular forms of weight &} ......o.oooonnn 31
i (Su{X(N)) ete.) (space of cusp forms of weight &) .........coooooeennnn 3.1
L0 TP R AR 6.3
18 2 P LT RETET TR 6.3

7 R L AR R R 1.5
Y T R R TR R R 2.8
reg (regulator map for Kz) oo iiaii e 2.10
per (period map) T PP P 410
exp* (the dual exponential MAD] «...oooovvire e 94
£, (Perrin RAOUW MAD) -« vteeneiema it 16.4
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Special functions

A (a theta function on an elliptic curve B) ... 1.3
caps Geg (Slegel units) ... 1.2

E( 1)5' (Eisensetein series of weight k) ... 3.2,42
E(&}a (Eisenstein series of weight &} .......ocoooii i 3.3
E(z) (Fisenstein series of weight 2) ........ .. ..o 34
F, (k) 7 (Eisenstein series of weight ) e 3.6

Operators

Ti{n) (a Hecke operator) ....... ... 2.9,4.9
T*{n) {a dual Hecke operator) ............. coooii i 29,49

Special integral cohomology classes

5M,N ...................................................................... 2.7
5M,N(k; 3 S KRR TRR 4.7
L 8 7 - TR E 6.3
Groups related to Galois cohomology
5 T PP S 12.2
H o 12.2
2, 20, T e e 12.5
Sel{K, T} (Selmer group) ... .coiiriii i 141
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CORRECTION TO “p-ADIC BOUNDARY VALUES”

by

Peter Schneider & Jeremy Teitelbaum

Abstract. — Correction to the article “p-adic boundary values” published in Coho-
mologies p-adiques et opplications erithmétiques (I}, Astérisque 278 (2002), p. 51—
125.

Proposition 5.4 of the paper “p-adic boundary values” in the first volume (Coho-
mologies p-adiques et applications arithmétiques (1), Astérisque 278 (2002), p. 51-128)
is incorrect. The proposition asserts that the map

Uy OB)T=0/0(B)=0 =, Q(U} N B, M})P=0

f — ¥ [(LuAIUFnBl@ L
HEB(T)

is an isomorphism of Banach spaces. In fact, it is only mJectlve, with dense image.
However, its only application, the main theorem of the paper (Theorem 8.6}, is still
true. In the following we indicate the necessary changes. For the convenience of the
reader, in the course of presenting these changes we reproduce here some portions of
Proposition 5.4 and Lemma 5.5 from Section 5 of the original paper.

A.
In section 5 of the paper Prop. 5.4 end Lemma 5.5 have to be replaced as foliows:

Proposition 5.4. — The map

Vi OB)T=0/O(BY0 — QU N B, M50

f — 3 [{L.AUfnBleL
REB(T)

1§ 6 condinuous end injective map of Banach spaces.
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