Zeta and L Functions

Jean-Pierre Serre

The purpose of this lecture is to give the general properties of zeta functions and Artin's L functions in the setting of schemes. I will restrict myself mainly to the formal side of the theory; for the connection with l-adic cohomology and Lefschetz's formula, see Tate's lecture.

\$1. ZETA FUNCTIONS

1.1. DIMENSION OF SCHEMES

All schemes considered below are supposed to be of finite type over \mathbb{Z} . Such a scheme X has a well-defined dimension denoted by $\dim X$. It is the maximum length n of a chain

$$Z_0 \subset Z_1 \subset \cdots \subset Z_n, \qquad Z_i \neq Z_{i+1}$$

of closed irreducible subspaces of X. If X itself is irreducible, with

generic point x, and if k(x) is the corresponding residue field, one has:

$$\dim X = \text{Kronecker dimension of } k(x).$$
 (1)

(The Kronecker dimension of a field E is the transcendence degree of E over the prime field, augmented by 1 if char E = 0.)

1.2. CLOSED POINTS

Let X be a scheme and let $x \in X$. The following properties are equivalent:

- a. $\{x\}$ is closed in X.
- b. The residue field k(x) is finite.

The set of closed points of X will be denoted by \bar{X} ; we view it as a discrete topological space, equipped with the sheaf of fields k(x); we call \bar{X} the atomization of X. If $x \in \bar{X}$, the norm N(x) of x is the number of elements of k(x).

1.3. ZETA FUNCTIONS

The zeta function of a scheme X is defined by the eulerian product

$$\zeta(X, s) = \prod_{x \in \overline{X}} \frac{1}{1 - 1/N(x)^s}$$
 (2)

It is easily seen that there are only a finite number of $x \in \bar{X}$ with a given norm. This is enough to show that the above product is a formal Dirichlet series $\sum a_n/n^3$, with integral coefficients. In fact, that series converges, as the following theorem shows:

Theorem 1. The product $\zeta(X, s)$ converges absolutely for

$$R(s) > \dim X$$
.

(As usual, R(s) denotes the real part of s.)

Lemma. (a) Let X be a finite union of schemes X_i . If Theorem 1 is valid for each of the X_i 's, it is valid for X. (b) If $X \to Y$ is a finite morphism, and if Theorem 1 is valid for Y, it is valid for X.

_ Using this lemma (which is elementary) and induction on dimension, one reduces Theorem 1 to the case

$$X = \operatorname{Spec} A[T_1, \ldots, T_n],$$

where the ring A is either Z or F_p . In the first case, dimX = n + 1, and the product (2) gives (after collecting some terms together):

$$\zeta(X, s) = \prod_{p} \frac{1}{1 - p^{n-s}} = \zeta(s - n).$$

In the second case, $\dim X = n$, and $\zeta(X, s) = 1/(1 - p^{n-s})$. In both cases, we have absolute convergence for $R(s) > \dim X$.

1.4. ANALYTIC CONTINUATION OF ZETA FUNCTIONS

One conjectures that $\zeta(X, s)$ can be continued as a meromorphic function in the entire s-plane; this, at least, has been proved for many schemes. However, in the general case, one knows only the following much weaker:

Theorem 2. $\zeta(X, s)$ can be continued analytically (as a meromorphic function) in the half-plane $R(s) > \dim X - \frac{1}{2}$.

The singularities of $\zeta(X, s)$ in the strip

$$\dim X - ^{\bullet} \frac{1}{2} < R(s) \leq \dim X$$

are as follows:

Theorem 3. Assume X to be irreducible, and let E be the residue field of its generic point.

a. If char E=0, the only pole of $\zeta(X, s)$ in $R(s) > \dim X - \frac{1}{2}$ is $s=\dim X$, and it is a simple pole.

b. If char $E = p \neq 0$, let q be the highest power of p such that E contains the field \mathbf{F}_q . The only poles of $\zeta(X, s)$ in $R(s) > \dim X - \frac{1}{2}$ are the points

$$s = \dim X + \frac{2\pi i n}{\log(q)}, \qquad n \in \mathbb{Z},$$

and they are simple poles.

Corollary 1. For any nonempty scheme X, the point $s = \dim X$ is a pole of $\zeta(X, s)$. Its order is equal to the number of irreducible components of X of dimension equal to $\dim X$.

Corollary 2. The domain of convergence of the Dirichlet series $\zeta(X, s)$ is the half-plane $R(s) > \dim X$.

Theorem 2 and Theorem 3 are deeper than Theorem 1. Their proof uses the "Riemann hypothesis for curves" of Weil [7] com-

bined with the technique of "fibering by curves" (i.e., maps $X \to Y$ whose fibers are of dimension 1). One may also deduce them from the estimates of Lang-Weil [5] and Nisnevič [6].

1.5. SOME PROPERTIES AND EXAMPLES

 $\zeta(X, s)$ depends only on the atomization X of X. In particular, it does not change by radicial morphism, and we have

$$\zeta(X_{\text{red}}, s) = \zeta(X, s). \tag{3}$$

If X is a disjoint union (which may be infinite) of subschemes X_i , we have

$$\zeta(X, s) = \prod \zeta(X_i, s),$$

with absolute convergence for $R(s) > \dim X$. It is even enough that \overline{X} be the disjoint union of the \overline{X}_i 's. For instance, if $f: X \to Y$ is a morphism, we may take for X_i 's the fibers $X_y = f^{-1}(y)$, $y \in \overline{Y}$, and we get:

$$\zeta(X, s) = \coprod_{y \in \overline{Y}} \zeta(X_y, s). \tag{4}$$

(This, with $Y = \text{Spec}(\mathbf{Z})$, was the original definition of Hasse-Weil.) Note that the X_y 's are schemes over the finite fields k(y); that is, they are "algebraic varieties."

If $X = \operatorname{Spec}(A)$, where A is the ring of integers of a number field $K \subseteq X$, s) coincides with the classical zeta function $\subseteq X$ attached to X. For X = X, we get Riemann's zeta.

If $A^n(X)$ is the affine n-space over a scheme X, we have

$$\zeta(\mathbf{A}^n(X), s) = \zeta(X, s - n).$$

Similarly,

$$\zeta(\mathbf{P}^n(X), s) = \prod_{m=0}^{m=n} \zeta(X, s-m).$$

1.6. SCHEMES OVER A FINITE FIELD

Let X be a scheme over \mathbf{F}_q . If $x \in \overline{X}$, the residue field k(x) is a finite extension of \mathbf{F}_q ; let $\deg(x)$ be its degree. We have

$$N(x) = q^{\deg(x)},$$

$$\zeta(X, s) = Z(X, q^{-s})$$
(5)

and

where Z(X, t) is the power series defined by the product:

$$Z(X, t) = \prod_{x \in \bar{X}} \frac{1}{1 - t^{\deg(x)}}.$$
 (6)

The product (6) converges for $|t| < q^{-\dim X}$.

Theorem 4 (Dwork). Z(X, t) is a rational function of t.

(See[3] for the proof.)

In particular, $\zeta(X, s)$ is meromorphic in the whole plane and periodic of period $2\pi i/\log(q)$.

There is another expression of Z(X, t) which is useful:

Let $k = \mathbb{F}_q$, and denote by k_n the extension of k with degree n. Let $X_n = X(k_n)$ be the set of points of X with value in k_n/k . Such a point P can be viewed as a pair (x, f), with $x \in \overline{X}$, and where f is a k-isomorphism of k(x) into k_n . We have

$$\bigcup X_n = X(\bar{k}),$$

where \bar{k} is the algebraic closure of k.

It is easily seen that the X_n 's are finite. If we put:

$$\nu_n = \operatorname{Card}(X_n),$$

we have

$$\log Z(X, t) = \sum_{n=1}^{\infty} \frac{\nu_n t^n}{n}.$$
 (7)

1.7. FROBENIUS

We keep the notations of 1.6. Let $F: X \to X$ be the "Frobenius morphism" of X into itself (i.e., F is the identity on the topological space X, and it acts on the sheaf O_X by $\varphi \mapsto \varphi^q$). If we make F operate on $X(\tilde{k})$, the fixed points of the nth iterate F^n of F are the elements of X_n . In particular, the number v_n is the number $\Lambda(F^n)$ of fixed points of F^n . This remark, first made by Weil, is the starting point of his interpretation of v_n as a trace, in Lefschetz's style.

§2. L FUNCTIONS

2.1 FINITE GROUPS ACTING ON A SCHEME

Let X be a scheme, let G be a finite group, and suppose that G acts on X on the right; we also assume that the quotient X/G = Y

exists (i.e., X is a union of affine open sets which are stable by G). The atomization \overline{Y} of Y may be identified with \overline{X}/G . More precisely, let $x \in \overline{X}$, let y be its image in \overline{Y} , and let D(x) be the corresponding decomposition subgroup; we have $g \in D(x)$ if and only if g leaves x fixed. There is a natural epimorphism

$$D(x) \to \operatorname{Gal} k(x)/k(y)$$
.

Its kernel I(x) is called the *inertia subgroup* corresponding to x; when $I(x) = \{1\}$, the morphism $X \to Y$ is étale at x.

Since D(x)/I(x) can be identified with Gal(k(x)/k(y)), it is a cyclic group, with a canonical generator F_x , called the *Frobenius element* of x.

2.2. ARTIN'S DEFINITION OF L FUNCTIONS

Let χ be a character of G (i.e. a linear combination, with coefficients in \mathbb{Z} , of irreducible complex characters). For each $y \in \mathbb{Z}$, and for each integer n, let $\chi(y^n)$ be the mean value of χ on the nth power F_x^n of the Frobenius element $F_x \in D(x)/I(x)$, where $x \in \overline{X}$ is any lifting of y. Artin's definition of the L function $L(X, \chi; s)$ is the following (cf. [1]):

$$\log L(X, \chi; s) = \sum_{y \in \overline{Y}} \sum_{n=1}^{\infty} \frac{\chi(y^n) N(y)^{-ns}}{n}.$$
 (8)

When χ is the character of a linear representation $g \mapsto M(g)$, we have

$$L(X, \chi; s) = \prod_{y \in \overline{Y}} \frac{1}{\det(1 - M(F_x)/N(y)^s)}, \qquad (9)$$

where $M(F_z)$ is again defined as the mean value of M(g), for $g \mapsto F_z$. Both expressions (8) and (9) converge absolutely when

$$R(s) > \dim X$$
.

2.3. FORMAL PROPERTIES OF THE L FUNCTIONS

- a. $L(X, \chi)$ depends on X only through its atomization X.
- b. $L(X, \chi + \chi') = L(X, \chi)$. $L(X, \chi')$.
- c. If X is the disjoint union of the X_i 's, with X_i stable by G for each i, we have

$$L(X, \chi; s) = \prod L(X_i, \chi; s)$$

with absolute convergence for $R(s) > \dim X$.

d. Let $\pi: G \to G'$ be a homomorphism, and let $\pi_* X = X \times^G G'$ be the scheme deduced from X by "extension of the structural group." Let χ' be a character of G', and let $\pi^* \chi' = \chi' \circ \pi$ be the corresponding character of G. We have

$$L(X, \pi^*\chi') = L(\pi_*X, \chi').$$
 (10)

e. Let $\pi: G' \to G$ be a homomorphism, and let π^*X denote the scheme X on which G' operates through π . Let χ' be a character of G', and let $\pi_*\chi'$ be its direct image, which is a character of G (when G' is a subgroup of G, $\pi_*\chi'$ is the "induced character" of χ'). We have

$$L(X, \pi_* \chi') = L(\pi^* X, \chi').$$
 (11)

f. Let $X = \operatorname{Spec}(\mathbf{F}_{q^n})$, $Y = \operatorname{Spec}(\mathbf{F}_q)$, $G = \operatorname{Gal}(\mathbf{F}_{q^n}/\mathbf{F}_q)$, and χ an irreducible character of G. We have

$$L(X, \chi; s) = \frac{1}{1 - \chi(F)q^{-s}}, \qquad (12)$$

where F is the Frobenius element of G.

It is not hard to see that properties (a) to (f) uniquely characterize the L functions.

- g. If $\chi = 1$ (unit character), $L(X, 1) = \zeta(X/G)$.
- h. If $\chi = r$ (character of the regular representation), we have

$$L(X, r) = \zeta(X).$$

By combining (h) and (b), one gets the following formula (which is one of the main reasons for introducing L functions):

$$\zeta(X) = \prod_{\chi \text{ o} \operatorname{Irr}(G)} L(X, \chi)^{\operatorname{deg}(\chi)}, \qquad (13)$$

where Irr(G) denotes the set of *irreducible characters* of G, and $deg(\chi) = \chi(1)$.

There is an analogous result for $\zeta(X/H)$, when H is a subgroup of G; one replaces the regular representation by the permutation representation of G/H.

2.4. SCHEMES OVER A FINITE FIELD

Let X be an \mathbf{F}_q -scheme and assume that the operations of G are \mathbf{F}_q -automorphisms of X. The scheme Y = X/G is then also an \mathbf{F}_q -scheme.

On the set $X(\bar{k})$, we have two kinds of operators: the Frobenius endomorphism F (cf. 1.7) and the automorphisms defined by the elements of G; if $g \in G$, we have $F \circ g = g \circ F$.

If we put as usual $t = q^{-s}$, we can transform $L(X, \chi; s)$ into a function $L(X, \chi; t)$ of t. An elementary calculation gives:

$$\log L(X, \chi; t) = \sum_{n=1}^{\infty} \nu_n(\chi) t^n / n, \qquad (14)$$

with

$$\nu_n(\chi) = \frac{1}{(G)} \sum_{g \in G} \chi(g^{-1}) \Lambda(gF^n), \qquad (15)$$

where $(G) = \operatorname{Card}(G)$, and $\Lambda(gF^n)$ is the number of fixed points of gF^n (acting on $X(\bar{k})$).

(These formulae could have been used to define the L functions; they make the verification of properties (a) to (f) very easy.)

Remark. It is not yet known that $L(X, \chi; t)$ is a rational function of t. However, this is true in the following special cases:

- a. When X is projective and smooth over \mathbf{F}_q : this follows from l-adic cohomology (Artin-Grothendieck).
- b. When Artin-Schreier or Kummer theory applies; that is, when G is cyclic of order p^N , or of order m prime to p, with m dividing q-1. This can be proved by Dwork's method; the case $G = \mathbb{Z}/p\mathbb{Z}$ has been studied in some detail by Bombieri.

(Added in proof: The rationality of the L functions has now been proved by Grothendieck. See his Bourbaki's lecture, n° 279.)

2.5, ARTIN-SCHREIER EXTENSIONS

It would be easy—but too long—to give various examples of L functions, in particular for an abelian group G. I will limit myself to one such example:

Let Y be an \mathbb{F}_q -scheme, and let a be a section of the sheaf O_Y . In the affine line Y[T], let X be the closed subscheme defined by the equation

$$T^p - T = a.$$

If we put $G = \mathbb{Z}/p\mathbb{Z}$, the group G acts on X by $T \mapsto T + 1$, and

X/G = Y; we get in this way an étale covering. Let w be a primitive pth root of unity in C, and let χ be the character of G defined by $\chi(n) = w^n$. The L function $L(X, \chi; t)$ is given by formula (14); its coefficients $\nu_n(\chi)$ can be written here in the following form:

$$\nu_n(\chi) = \sum_{y \in Y_n} w^{\mathrm{Tr}_n a(y)}, \qquad (16)$$

where $Y_n = Y(k_n)$, and Tr_n is the trace map from $k_n = \mathbf{F}_{q^n}$ to \mathbf{F}_p . The above expression is a typical "exponential sum." If, for instance, we take for Y the multiplicative group \mathbf{G}_m , and put $a = \lambda y + \mu y^{-1}$, we get the so-called "Kloosterman sums." This connection between L functions and exponential sums was first noticed by Davenport-Hasse [2] and then used by Weil [8] to give estimates in the one-dimensional case.

2.6. ANALYTIC CONTINUATION OF L FUNCTIONS

Theorems 2 and 3 have analogues for L functions. First:

Theorem 5. $L(X, \chi; s)$ can be continued analytically (as a meromorphic function) in the half-plane $R(s) > \dim X - \frac{1}{2}$.

The singularities of $L(X, \chi; s)$ in the critical strip

$$\dim X - \frac{1}{2} < R(s) \le \dim X$$

can be determined, or rather reduced to the classical case $\dim X = 1$. We use the following variant of the "fibering by curves" method:

Lemma. Let $f: X \to X'$ be a morphism which commutes with the action of the group G. Assume that all geometric fibers of f are irreducible curves. Then

$$L(X, \chi; s) = H(s) \cdot L(X', \chi; s - 1),$$
 (17)

where H(s) is holomorphic and $\neq 0$ for $R(s) > \dim X - \frac{1}{2}$.

This lemma gives a reduction process to dimension 1 (and even to dimension 0 if X is a scheme over a finite field). The result obtained in this way is a bit involved, and I will just state a special case:

Theorem 6. Assume that X is irreducible, and that G operates faithfully on the residue field E of the generic point of X. Let χ be a character of G, and let $\langle \chi, 1 \rangle$ be the multiplicity of the identity character 1 in χ . The order of $L(X, \chi)$ at $s = \dim X$ is equal to $-\langle \chi, 1 \rangle$.

Corollary. If χ is a non-trivial irreducible character, $L(X, \chi)$ is holomorphic and $\neq 0$ at the point $s = \dim X$.

2.7. ARTIN-ČEBOTAREV'S DENSITY THEOREM

Let Y be an irreducible scheme of dimension $n \ge 1$. By using the fact that $\zeta(Y, s)$ has a simple pole at s = n, we get easily:

$$\sum_{y \in \overline{Y}} \frac{1}{N(y)^s} \sim \log \frac{1}{s-n} \quad \text{for } s \to n.$$
 (18)

A subset M of \overline{Y} has a Dirichlet density m if we have

$$\left(\sum_{y \in M} \frac{1}{N(y)^{s}}\right) / \log \frac{1}{s-n} \to m \quad \text{for } s \to n.$$
 (19)

For $Y = \operatorname{Spec}(\mathbf{Z})$, this is the usual definition of the Dirichlet density of a set of prime numbers.

Now let X verify the assumptions of Theorem 6, and let Y = X/G. Assume that dim $X \ge 1$ and that G operates freely (i.e., $I(x) = \{1\}$ for all $x \in \overline{X}$). If $y \in \overline{Y}$, the Frobenius element F_x of a corresponding point $x \in \overline{X}$ is a well defined element of \overline{G} , and its conjugation class F_y depends only on y.

Theorem 7. Let $R \subset G$ be a subset of G stable by conjugation. The set \overline{Y}_R of elements $y \in \overline{Y}$ such that $F_y \subset R$ has Dirichlet density equal to $\operatorname{Card}(R)/\operatorname{Card}(G)$.

This follows by standard arguments from the corollary to Theorem 6.

Corollary. \bar{Y}_R is infinite if $R \neq \emptyset$.

Remark. A slightly more precise result has been obtained by Lang [4] for "geometric" coverings and also for coverings obtained by extension of the ground field.

REFERENCES

- 1. Artin, E., Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren, Abh. Hamb., 8(1930), 292-306.
- 2. Davenport, H., and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen im gewissen zyklischen Fällen. Crelle Jour., 172(1935), 151-182.
- 3. Dwork, B., On the rationality of the zeta function of an algebraic variety, Amer. Jour. Math., 82(1960), 631-648.
- 4. Lang, S., Sur les séries L d'une variété algébrique, Bull. Soc. Math. France, 84(1956), 385-407.
- 5. Lang, S., and A. Weil, Number of points of varieties in finite fields, Amer. Jour. Math., 76(1954), 819-827.
- 6. Nisnevič, L., Number of points of algebraic varieties over finite fields (in Russian), *Dokl. Akad. Nauk*, 99(1954), 17-20.
- 7. Weil, A., Sur les courbes algébriques et les variétés qui s'en déduisent, Act. Sci. Ind., n°. 1041, Paris, Hermann, 1948.
- 8. Weil, A., On some exponential sums, *Proc. Nat. Acad. Sci. USA*, 34(1948), 204-207.
- 9. Weil, A., Number of solutions of equations in finite fields, Bull. Amer. Math. Soc., 55(1949), 497-508.