Zeta and I, Functions

Jean-Pierre Serre

‘The purpose of this lecture is to give the general properties of zeta
functions and Artin’s L functions in the setting of schemes. 1 will
restrict myself mainly to the formal side of the theory; for the con-
nection with /-adic cohomology and Lefschetz’s formula, see Tate’s
lecture.

8§1. ZETA FUNCTIONS

1.1. DIMENSION OF SCHEMES

All schemes considered below are supposed to be of finite type
over Z. Such a scheme X has a well-defined dimension denoted by
dimX. It is the maximum length » of a chain

o CZ:C - CZy Z; # Lo

of closed irreducible subspaces of X. If X itself is irreducible, with
82
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generic point x, and if £(x) is the corresponding residue field, one
has:
dimX = Kronecker dimension of £(x). (1)

(The Kronecker dimension of a field E is the transcendence degree
of E over the prime field, augmented by 1 if charZ = 0.)

1.2. CLOSED POINTS

Let X be a scheme and let x ¢ X. The following properties are
equivalent:

a. {x} is closed in X.

b. The residue field k(x) is finite.

The set of closed points of X will be denoted by X; we view it as a
discrete topological space, equipped with the sheaf of fields £(x); we
call X the atomization of X. If x € X, the norm N(x) of x is the number
of elements of k(x).

1.3. ZETA FUNCTIONS
The zeta function of a scheme X is defined by the eulerian product

1
$(X,5) = ,gﬂ ey

2)

It is easily seen that there are only a finite number of x € X with a
given norm. This is enough to show that the above product is a
formal Dirichlet series Za,/n*, with integral coefficients. In fact, that
series converges, as the following theorem shows:

Theorem 1. The product {(X, s} converges absolutely for
R{s) > dimX. ‘
(As usual, R(s) denotes the real part of s5.)

Lemma. (a) Let X be a finite unidn of schemes X;. If Theorem 1
is valid for each of the X%, it is valid for X. (b) If X — Y is a finite
morphism, and if Theorem 1 is valid for ¥, it is valid for X.

_ Using this lemma (which is elermentary) and induction on dimen-
sion, one reduces Theorem 1 to the case

X = Spec A[TJ_, sy Tu],
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where the ring 4 is either Z or F,,. In the first case, dimX = » + 1,
and the product (2) gives (after collecting some terms together):

1
X, 8) =,
p 1 —p*
In the second case, dimX = n, and ¢(X, 5) = 1/(1 — p»*). In both
cases, we have absolute convergence for R(s) > dimX.

= {(s—n).

1.4. ANALYTIC CONTINUATION OF ZETA FUNCTIONS

One conjectures that {(X, s) can be continued as a meromorphic
function in the entire s-plane; this, at least, has been proved for
many schemes. However, in the general case, one knows only the
following much weaker:

Theorem 2. {(X, 5} can be continued analytically (as a mero-
morphic function) in the half-plane R(s) > dimX — 5.

The singularities of £(X, 5) iri the strip

dimX — ¥4 < R(s) £ dimX
are as follows:

Theorem 3. Assume X to be irreducible, and let £ be the residue
field of its generic point.

a. If charE = 0, the only pole of (X, s5) in R{s) > dimX — }%
is s = dimX, and it is a simple pole.

b. If charE = p 0, let g be the highest power of p such that £
contains the field F,. The only poles of {(X, s) in R(s) > dimX — 14
are the points

2min

s = dimX 4+ ’
log(q)

n€Z,

and they are simple poles.

Corollary 1. For any nonempty scheme X, the point s = dimX
is a pole of {(X, 5). Its order is equal to the number of irreducible
components of X of dimension equal to dimX.

Corollary 2. The domain of convergence of the Dirichlet series
¢(X, 5) is the half-plane R(s) > dim4&.

Theorem 2 and Theorem 3 are deeper than Theorem 1. Their
proof uses the “Riemann hypothesis for curves” of Weil [7] com-
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bined with the technique of “fibering by curves” (i.e., maps X —» ¥
whose fibers are of dimension 1). One may also deduce them from
the estimates of Lang-Weil [5] and Nisnevi& [6].

1.5. SOME PROPERTIES AND EXAMPLES

£(X, s) depends only on the atomization X of X. In particular, it
does not change by radicial morphism, and we have

{( Kty 8} = $(X, ). 3

If X is a disjoint union (which may be infinite) of subschemes
X;, we have
$(X, ) = I ¢(X, 9),

with absolute convergence for R(s) > dimX. It is even enough that
X be the disjoint union of the X;’s. For instance, if fitX—>Yisa
morphism, we may take for X’s the fibers X, = f~1(y), y € ¥, and
we get:
(%, 8) = I 2K, o) @
u¥

(This, with ¥ = Spec(Z), was the original definition of Hasse-
Weil.) Note that the X,’s are schemes over the finite fields k(y);
that is, they are “algebraic varieties.”

If X = Spec(4), where 4 is the ring of integers of a number field K
{(X, s5) coincides with the classical zeta function {x attached to
K. For 4 = Z, we get Riemann’s zeta. _

If An(X) is the affine n-space over a scheme X, we have

r(A™X), 5) = ¢(X, s —n).

mmn

¢(Pr(X), 5) = IL, £(X, s — m).

Similarly,

1.6. SCHEMES OVER A FINITE FIELDI
Let X be a scheme over F,. If x ¢ X, the residue field £(x) is a

finite extension of F,; let deg(x) be its degree. We have
.N(x) = qden(z)’
and $X, ) = Z(X, ) (5)
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where Z(X, ¢} is the power series defined by the product:

weX 1 — pdes(@

©

The product (6) converges for M < giimX,
Theorem 4 (Dwork), Z(X, t) is a rational function of #.

(See[3] for the proof.)
In particular, {(X, s) is meromorphic in the whole plane and
periodic of period 2mxi/log(g).

There is another expression of Z(X, ¢) which is useful:

Let £ = F,, and denote by %, the extension of k¥ with degree »n.
Let X, = X(k,) be the set of points of X with value in £./k. Such
a point P can be viewed as a pair (x, ), with x € X, and where f is
a k-isomorphism of £(x) into k.. We have

U X, = X(F),

where £ is the algebraic closure of k.
1t is easily seen that the X,’s are finite. If we put:

v, = Card(X,),
we have

-]

log Z(X, t) = 2 Ll (7
a=1 2

1.7. FROBENIUS

We keep the notations of 1.6. Let F : X — X be the “Frobenius
morphism” of X into itself (i.e., F is the identity on the topological
space X, and it acts on the sheaf Ox by o |- ¢9). If we make F
operate on X(k), the fixed points of the nth iterate F* of F are the
elements of X,. In particular, the number v, is the number A(F™) of
fixed points of F*. This remark, first made by Weil, is the starting point
of his interpretation of », as a frace, in Lefschetz’s style.

§2. L FUNCTIONS

2.1 FINITE GROUPS ACTING ON A SCHEME

Let X be a scheme, let G be a finite group, and suppose that G
acts on X on the right; we also assume that the quotient X/G =Y
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exists (i.e., X is a union of affine open sets which are stable by G).
The atomization ¥ of ¥ may be identified with X/G. More precisely,
let x € X, let y be its image in ¥, and let D(x) be the corresponding
decomposition subgroup; we have g € D(x) if and only if g leaves x
fixed. There is a natural epimorphism

D(x) — Gal k(x)/k(y)-

Its kernel I(x) is called the inertia subgroup corresponding 'to x;
when I(x) = {1}, the morphism X — Y is éale at .

Since D(x)/I(x) can be identified with Gal(k(x)/k(y)), it is a
cyclic group, with a canonical generator F, called the Frobenius
element of x.

2.2, ARTIN’S DEFINITION OF L FUNCTIONS

Let x be a character of G (i.e. a linear combination, with coeffi-
cients in Z, of irreducible complex characters). For each y ¢ P, and
for each integer », let x(y") be the mean value of x on the ath power
E” of the Frobenius element F, € D(x) /I(x), where x ¢ X is any lifting
of y. Artin’s definition of the L function L(X, x; s) is the following

(cf. [1]):

log L(X, x;5) = = 3 XOONOI™ @®)
we¥ n=1 n

When x is the character of a linear representation g |»> M(g), we
have

N 1
L(XJ X 5) f}'r det('l —_ M(Fz)/N(y)’)’

where M(F,) is again defined as the mean value of M(g), for g {— F..
Both expressions (8) and (9) converge absolutely when

R(s) > dimX.

(9)

2.3. FORMAL PROPERTIES OF THE L FUNCTIONS
a. L(X, x) depends on X only through its atomization X.
b. L(X, x + x') = L(X, x). L(X, X').
c. If X is the disjoint union of the Xys, with X; stable by G for
each z, we have
L(X, x; 5) = II L{X;, x; 5)

with absolute convergence for R(s) > dimX.
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d. Let v : G— G’ be a homomorphism, and let 7+ X = X X¢ G’
be the scheme deduced from X by “extension of the structural
group.” Let x” be a character of G/, and let #*y’ = x’ o 7 be the
corresponding character of G. We have

L(X, *x) = L(wx X, x). (10)

e. Let 7 : G’ > G be a homomorphism, and let #*X denote the
scheme X on which G’ operates through =. Let x’ be a character
of G, and let m«x’ be its direct image, which is a character of G
(when G’ is a subgroup of G, mxx’ is the “induced character”

of x'). We have
L(X, mx") = L(@*X, x'). (11)
f. Let X = Spec(Fu), ¥ = Spec(Fp), G = Gal(F,./F,), and x an
irreducible character of G. We have

1
1= x(F)q

where 7 is the Frobenius element of G.
It is not hard to see that properties (a) to (f) uniquely characterize
the L functions.
g. If x = 1 (unit character), L(X, 1} = {(X/G).
h. If x = r (character of the regular representation), we have

L(X, r} = {(X).

By combining (h) and (b), one gets the following formula (which is
one of the main reasons for introducing L functions):

FX) = II L(X, x)d=i¥, (13)

x e Irr (G

L(X, x;5) = (12)

where Irr(G) denotes the set of irreducible characlers of G, and
deg(x) = x(1).

There is an analogous result for {(X/H), when H is a subgroup of
G; one replaces the regular representation by the permutation
representation of G/H.

2.4. SCHEMES OVER A FINITE FIELD

Let X be an F,-scheme and assume that the operations of G are
Fg-automorphisms of X, The scheme ¥ = X/G is then also an
Fg-scheme.
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On the set X(£), we have two kinds of operators: the Frobenius
endomorphism F (c¢f. 1.7) and the automorphisms defined by
the elements of G; if g € G, we have Fo g = go F,

If we put as usual ¢ = ¢~°, we can transform L(X, x; s) into a
function L(X, x; £} of £. An elementary calculation gives:

log L, x; ) = 3 w00/, (14)

1
wi Ya =—2 —DA , 15
th (x) © = x(g A (gF™) (15)

where (G) = Card(G), and A(gF*)} is the number of fixed points of
gF* (acting on X(k)).
(These formulae could have been used to define the L functions;
they make the verification of properties (a) to (f) very easy.)
Remark. It is not yet known that L(X, x; ¢) is a rational function
of . However, this is true in the following special cases:

2. When. X is projective and smooth over F,: this follows from
{-adic cohomology (Artin-Grothendieck).

b. When Artin-Schreier or Kummer theory applies; that is, when
G is cyclic of order ¥, or of order m prime to p, with m divid-
ing ¢ — 1. This can be proved by Dwork’s method; the case
G = Z/pZ has been studied in some detail by Bombieri.

(Added in proof: The rationality of-the L functions has now
been proved by Grothendieck. See his Bourbaki’s lecture, n°®279.)

2.5, ARTIN-SCHREIER EXTENSIONS

It would be easy—but too long—to give various examples of L
functions, in particular for an abelian group G. I will limit myself
to one such example:

Let Y be an F,-scheme, and let a be a section of the sheaf Oy. In
the affine line ¥[77, let X be the closed subscheme defined by the
equation

T? - T = g,

If we put G = Z/pZ, the group Gacts on X by T |- T + 1, and
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X/G = Y; we get in this way an éale covering. Let w be a primitive
#th root of unity in C, and let x be the character of G defined
by x(n) = w». The L function L(X, x; £) is given by formula
(14); its coefficients ».(x) can be written here in the following
form:

() = 2 @), (16)

kL] ¥n

where Y, = Y(k,), and Tr, is the trace map from k., = F. to
F,. The above expression is a typical “exponential sum.” If, for
instance, we take for Y the multiplicative group Gm, and put
a =Xy + py !, we get the so-called ‘“Kloosterman sums.” This
connection between L functions and exponential sums was first
noticed by Davenport-Hasse [2] and then used by Weil [8] to give
estimates in the one-dimensional case,

2.6. ANALYTIC CONTINUATION OF L FUNCTIONS
Theorems 2 and 3 have gnalogues for L functions. First:

Theorem 5. L(X, x; s) can be continued analytically (as a
meromorphic function) in the half-plane R(s) > dimX — 14.

The singularities of L(X, x; s) in the critical strip
dimX — 14 < R(s) < dimX

can be determined, or rather reduced to the classical case dimX = 1.
We use the following variant of the “fibering by curves” method:

Lemma. Letf: X— X’ be a morphism which commutes with the
action of the group G. Assume that all geometric fibers of f are
irreducible curves. Then

L(X, x; 5) = H(s) - L(X, x; 5 — 1), (17)
where H(s) is holomorphic and # 0 for R(s) > dimX — 14.

This lemma gives a reduction process to dimension 1 (and even
to dimension 0 if X is a scheme over a finite field). The result
obtained in this way is a bit involved, and I will just state a special
case:
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Theorem 6. Assume that X is irreducible, and that G operates
faithfully on the residue field E of the generic point of X. Let x be a
character of G, and let (x, 1) be the multiplicity of the identity
character 1 in x. The order of L(X, x) at s = dimX is equal
to —(x, 1).

Corollary. If x is a2 non-trivial irreducible character, L(X, x) is
holomorphic and % 0 at the point & = dimX.

2.7. ARTIN-CEBOTAREV’S DENSITY THEOREM ‘

Let Y be an irreducible scheme of dimension » = 1. By using the
fact that {(¥, s) has a simple pole at s = n, we get easily:

1 1
Z —-— ~log fors—n. (18)
w? V() s—n
A subset M of ¥ has a Dirichlet density m if we have
(E ! ) / 1 L - for 5 — (19)
0 or .
yeM N(y)° Ss=n " T

For ¥ = Spec(Z), this is the usual definition of the Dirichlet
density of a set of prime numbers.

Now let X verify the assumptions of Theorem 6, and let ¥ = X/G.
Assume that dimX = 1 and that G operates freely (i.e., I(x) = {1}
for all x € X). If y ¢ 7, the Frobenius element F; of a corresponding
point x € X is a well defined element of G, and its conjugation class
F, depends only on y.

Theorem 7. Let R C G be a subset of G stable by conjugation.
The set ¥z of elements y € ¥ such that F, C R has Dirichlet density
equal to Card(R)/Card(G).

&

This follows by standard arguments from the corollary to
Theorem 6.

Corollary. g is infinite if R 5 0.

Remark. A slightly more precise result has been obtained by
Lang [4] for “geometric”’ coverings and also for coverings obtained
by extension of the ground field.
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